Urban Systems Ltd. Attention: Glen Shkurhan, P.Eng. Project No: 1055860

Reference: White Rock Integrated Stormwater Management Plan – Hydrogeology

that would include, for example, periodically measuring groundwater levels from observation² wells and collecting groundwater samples from both production and observation wells for analyses of water chemistry. These data could then be used to identify trends (long-term changes [decrease] in groundwater levels), or changes to concentrations of constituents of concern or interest. Because the watershed divide is north of the White Rock boundary, much of the recharge zone is in South Surrey. Thus, the management strategy should be integrated between both the City of White Rock and Surrey where infiltration based BMP's are being considered in areas north of the City boundary.

Based on the information available, it does not appear as if observation (monitoring) wells (in addition to the production wells) have been installed within the City limits. Thus, the limits of our understanding of the hydrogeologic conditions under White Rock are based on only six production wells that are situated in four separate areas, making it difficult to adequately define zones of risk for the application of infiltration based BMPs without additional information. For example, it is clear that a well-defined clay barrier lies beneath the area of PW#1, 2 and 3. This clay layer may be correlated with the clay layer below PW#4, but may not be contiguous due to the lower lying topography in the intervening area. PW#5 begins in strata below the clay layer as it is much lower in elevation, so the southern extent of clay layer is limited by topography. Further, since the clay layer was not identified in PW#6, the eastern extent of the clay layer between PW#3 and PW#6 is unknown. Finally, there is no subsurface data east of PW#6 or west of PW#4, so the lateral extent of the clay layer is not known.

With these constraints in mind, preliminary risk zones were identified within the City limits. Drawing #3 depicts Zone A, which is inferred to have at least 3 m of the Vashon blue clay layer lying stratigraphically above the Sunnyside Uplands Aquifer, while Zone B has no overlying clay layer above the aquifer. The line was drawn at the projected stratigraphic top of the 3-m thick clay³. The stratigraphy is unknown in areas in the eastern and western parts of the city limits (noted by dashed lines with question marks). In these areas more work should be required to demonstrate the presence of an overlying aquitard above the aquifer. Table 4-1 provides preliminary recommendations for BMPs for the two zones. Risk zones are provided for general reference only. Site-specific information, as described in Table 4-1, must be obtained and provided to the City to confirm actual site conditions at any location.

In any case, because the hydraulic properties of the clay layer have been estimated for this report based on only desktop derived data, which could underestimate the permeability of the confining layer, a field assessment should be carried out to verify the soil characteristics and hydraulic properties of the confining layer. Further, the mapped extent of the confining layer should be verified in the field in conjunction with additional hydraulic conductivity testing. The hydraulic conductivity testing will help to confirm whether the 3 m thickness of the confining layer is adequate for aquifer protection.

² Observation wells are preferable to production wells to characterize static groundwater levels; this is because the water levels in production wells are intermittently under stress and not static.

³ The 3-m thickness is the minimum thickness of the blue clay described in the boring logs of the production wells.

Stantec

Urban Systems Ltd. Attention: Glen Shkurhan, P.Eng. Project No: 1055860

Reference: White Rock Integrated Stormwater Management Plan – Hydrogeology

Table 4-1: Recommended BMPs associated with the Preliminary Risk Map prepared for use with the ISMP.

Risk Zone	Zone A	Zone B	
Slopes > 2:1	No infiltration systems within 75 m of slopes > 2:1		
Slopes < 2:1, but > 4:1	If a significant low permeability unit* (e.g., compact till or clay layer ~0.5 m thick or me encountered within 5 m of the surface, use perforated underdrains with a low permea- in biofiltration-type systems within 75 m of slopes > 4:1, to convey underflow to storm Assumes no infiltration to occur.		
	If no significant low permeability unit* (e.g., compact till or clay layer ~0.5 m thick or n encountered within 5 m of surface, infiltration system in biofiltration-type system reco	nore) is mmended.	Use perforated underdrains with a low
	if a significant low permeability unit* (e.g., compact till or clay layer ~0.5 m thick or me encountered within 5 m of the surface – use perforated underdrains in biofiltration-typ to convey underflow to storm sewers	permeability liner in biofiltration-type systems to convey underflow to storm sewers. Assumes no infiltration to occur.	
Slopes < 4. I	if no significant low permeability unit* (e.g., compact till or clay layer ~0.5 m thick or more) is encountered within 5 m of surface – infiltration system in biofiltration-type system is recommended		
Slopes < 10:1	if no significant low permeability unit* (e.g., compact till or clay layer ~0.5 m thick or n encountered within 2 m of surface – infiltration system in biofiltration-type system rec	nore) is ommended	
Site-specific Investigations	Depending on the areal extent of the development, and total volume of runoff to contrisite-specific investigations to confirm the presence of confining layers. For larger development, and include performing a minimum of two 5 m deep geotech borings; add one be every additional 15 m in swale length > 15 m. Further, conduct a minimum of three infiltration tests; add one test for every additional swale length > 15 m.	rol, perform elopments, oring for al 15 m in	Assumes no infiltration to occur, so design will not require identification of low permeability unit or infiltration tests.
In areas of uncertain zone delineation, demonstration of low risk conditions (i.e., existence of a laterally continuous > 3m thick low permeability unit) is required.	Depending on the areal extent of the development, and total volume of runoff to contribute presence of confining layers. For larger developments, this may include one 20 m the proposed infiltration system, and an additional minimum of four 20 m deep geoted 50-100 m distance from center of proposed infiltration system. The borings must be seleast 70 m. The area is considered low risk if the low permeability unit can be interpret identified in all five borings. The soil data obtained from each geotechnical boring show percolation (unsaturated media) and vertical/horizontal conductivities (saturated zone specific hydrostratigraphic units, permeater tests on core samples, recovery tests, etc.	rol, perform s in deep geoted ch borings ori eparated by a eted to be late buld be suffici es); this includ c.	ite investigations to confirm ch boring near the center of ented radially and spaced a horizontal distance of at erally continuous and ent to estimate vertical des grain size analyses of

*infiltration rate < 2.5 mm/hr

Urban Systems Ltd. Attention: Glen Shkurhan, P.Eng. Project No: 1055860

Reference: White Rock Integrated Stormwater Management Plan – Hydrogeology

5 CLOSURE

The conclusions and recommendations presented in this report are in accordance with our current understanding of the Site conditions, as referenced in this report. Our interpretation of subsurface conditions is based on assumed conditions. No warranty is expressed or implied.

This report was prepared for the exclusive use of Urban Systems and the City of White Rock. Any use of this report or the material contained herein by third parties should only be done with written consent from Jacques Whitford Stantec AXYS Limited.

We trust that this information meets your present requirements. Should you have any questions or require additional information, please contact the undersigned

Sincerely,

Stantec Consulting Ltd.

Reviewed by:

Original signed by:

Original signed by:

Heather Provost, B.Sc., CEPIT Environmental Hydrogeologist Steve Wilbur, P.Geo Senior Hydrogeologist

Appendix A: Drawings

HP/SW/mp

File Name and Path: [P:_CMiC Projects\1055000_to_1056000\1055860 EPP - White Rock ISMP\Hydrogeology\Report\1055860 White Rock ISMP Hydrogeological Assessment_FINAL.doc]

Urban Systems Ltd. Attention: Glen Shkurhan, P.Eng. Project No: 1055860

Reference: White Rock Integrated Stormwater Management Plan – Hydrogeology

6 **REFERENCES**

BC Water Resource Atlas - http://www.env.gov.bc.ca/wsd/data_searches/wrbc/index.html

Environment Canada - http://www.climate.weatheroffice.ec.gc.ca/advanceSearch.html

Driscoll, F. G., 1986. Groundwater and Wells, 2nd ed., Johnson Division, St. Paul, Minnesota.

Freeze R.A., Cherry J.A., 1979, Groundwater, 1st ed., Prentice-Hall of Canada Ltd., Toronto.

- Geological Survey of Canada, Map 1484A New Westminster West of 6th Meridian, 1:50,000 scale, 1977
- Minister of Water, Land and Air Protection (MWLAP), June 2002, Guide to Using the BC Aquifer Classification Maps for the Protection and Management of Groundwater.
- Williams, J.R., Ouyang, Y., Chen, J. and Ravi, V., Estimations of Recharge Rate in Vadose Zone: Application of Selected Mathematical Models, US EPA, EPA/600/R-97/128b, 1998.

Drawings

One Team. Infinite Solutions.

Jacques Whitford Stantec Limited © 2009

Jacques Whitford Stantec Limited © 2009

APPENDIX D

Water Quality

Runoff Quality

Section 1 – Context for Runoff Quality Assessment

The number of potential substances, organic and inorganic, that can be, and often are, found in urban runoff is staggering. In essence, just about anything that finds its way on to our urban surfaces, particularly impervious surfaces such as roads, parking lots and buildings, can be washed off those surfaces by rain and snowmelt and be carried into receiving water bodies as non-point source (NPS) pollution. Table D.1 provides a listing of some major NPS pollutant sources and the pollutants that they generate. Many of these pollutants can be acutely toxic at higher concentrations, although in general such toxicity is not normally associated with "typical" urban runoff. Rather, the accumulated affect of pollutant wash off over time can yield unacceptable chronic toxicity or bioaccumulation in aquatic life.

As will be described in more detail in Section 3, below, we estimated the generation and washoff of some key pollutants from the City into Semiahmoo Bay, using the model *WinSLAMM*. The pollutants simulated in the model at this time are total suspended and dissolved solids (TSS; TDS); bacteria (fecal coliforms); total and dissolved copper (Cu); total and dissolved zinc (Zn). The estimates account for the inter-event interval between storms during which pollutants build up on impervious surfaces within the City as well as the volume of runoff that the storms produce to wash off these pollutants. Because the City is not anticipated to undergo fundamental changes in land use and development density, future loads will not likely be significantly different than those generated currently.

SOURCE	MAJOR POLLUTANTS
Atmospheric deposition	From urban and rural areas: fine partides, phosphorus, ammonia, nitrate, metals, pesticides, petroleum products, and toxic organics
Litter and leaf fall	Personal and commercial debris dis carded to road way and parking lots such as plastics, paper, cans, and food; leaves and organic debris from roadside and parking lot trees that falls on paved surfaces: biological oxygen demand (BOD ₅), nitrogen, phosphorus, humic organics, and metals
Residential and roadside lands cape maintenan ce	Bacteria, phosphorus and nitrogen, pesticides and herbicides, dissolved organics from soil amendments
Transportation vehides	Fuels, brake drum and tire wear, body rust: fine partides, metals in particular zinc, copper, cadmium, lead, and chromium; and petroleum products such as oil & grease and poly-aromatic hydrocarbons (PAH)
Pavement and pavement maintenance	Temperature modification; petroleum derivatives from asphalt; materials from abraded or degraded pavement
Pavement dei cing	Chlorides, sulfates, organics from a cetate deicers, coarse sediments, and cyanide
Building exteriors	Gal vanized metals, chipped and eroded paints, corrosion of surfaces a ccelerated by a cid rain, metals
Industrial businesses	Varies widely with the industry. Includes the pollutants commonly contributed by other sources but may also include those less commonly detected in general urban runoff or at concentrations greater than typically found in urban stormwater; pollutants from inappropriate connections; pollutants that may be more prevalent in stormwater from industrial areas include petroleum products, phenols, solvents, and metals
Commercial businesses	Parked vehides; improperly disposed refuse such as discarded food, used cooking oil and grease, and packaging materials; internal drains improperly connected to the storm system: metals, BOD ₅ , bacteria, phosphorus, nitrogen, oil, and grease
Residential activities	Lands caping, pest control, moss control, vehide maintenance, painting, wood preservation: pesticides and herbicides, phosphorus, nitrogen, petroleum products, zinc, and bacteria
Site development	High pH from fresh concrete surfaces; petroleum products from fresh asphalt and spills; organics and particles from lands caping materials; eroded sediment and associated constituents like phosphorus; pollutants associated with improperly disposed construction materials like fresh concrete and paints; cement from preparation of exposed aggregate concrete
Public in frastructure	Metals from galvanized stormwater drain systems ; metals and petroleum products from maintenance shops ; bacteria , nitrogen , phosphorus , and organics from exfiltrating or overflowing sanitary sewers

Table D.1. Non-Point Source Urban Pollutants and Their Sources

Source: Table 2.3, in G. Minton, Stormwater Treatment: Biological, Chemical and Engineering Principles, Second Edition, 2005

In an ideal world, one might seek to have urban runoff completely free of any NPS pollution, that is, to have the runoff as pure as it was prior to human intervention or contact. In reality, the activities that constitute urban life will always generate substances that can and likely will become NPS pollution. In British Columbia there are no specific standards or regulatory limits as to what constitutes "too much" NPS pollution in urban runoff¹. The Federal Fisheries Act does prohibit placing, or causing to be placed, "deleterious substances" into fish-bearing waters. Again, however, there are no specific standards to determine what constitutes such substances and what level can or will be called deleterious. There are also federal and provincial guidelines for ambient water quality that establish the expected baseline conditions necessary for protection of aquatic life and use of water for other purposes. While concentrations of pollutants in urban runoff could simply be compared against these guidelines, such a comparison would not account for natural chemical, physical and/or biological processes that might render the pollutants insignificant or harmless once in the receiving water body environment. For example, mixing zones are allowed for treated sewage discharges into rivers in BC, with the recognition that various natural processes within the mixing zone will reduce concentrations to levels considered acceptable. Additional discussion of water quality issues is found in the environmental report (Appendix B).

Section 2 – Performance Targets

So how does a community decide whether and how much NPS pollution to eliminate or treat as a part of its own environmental stewardship? For the White Rock, part of the answer lies in the aquifer which is below a large portion of the City and from which the City obtains its water supply. As discussed in the hydrogeology section of the ISMP, this aquifer may be vulnerable to contamination from urban runoff generated within the City itself. Another part of the answer lies in White Rock's primary receiving water body, Semiahmoo Bay. As discussed in more detail in the environmental section of the ISMP, shellfish harvesting has been banned since 1972, due to high bacteria counts (specifically fecal coliform counts). While it has not been established that White Rock is the sole or even the most significant source of the bacteria, nonetheless, fecal coliforms are consistently present in urban runoff in large quantities.

It has become generally accepted that removal of sediments and particulate solids (or suspended solids) from stormwater is the primary key to reducing NPS pollution. There are several reasons for this. First, total suspended solids (TSS) is generally the single largest pollutant present in urban runoff, both in terms of average concentration and in terms of overall load over time. Second, many other pollutants are hydrophobic and thus become associated with TSS; removing TSS also removes many other pollutants. Third, TSS has readily visible and easily anticipated results in the environment (e.g., silted streams that suffocate aquatic life and degrade fish habitat) and in municipal storm infrastructure (e.g., clogged catch basins). Fourth, it is relatively easy to keep TSS out of runoff in the first place or, if in runoff already, it is relatively easy to remove compared to some other pollutants. Fifth, the mechanisms for removal of many other pollutants (e.g., filtration) work much better when TSS has already been removed. Thus, we recommend that White Rock establish a specific performance target for TSS in urban

¹ There are, however, performance targets for wastewater treatment; for example, the Province requires removal of total suspended solids down to 10-45 mg/L, on average.

runoff for new and redevelopment projects, and strive to meet a minimum level of TSS removal on an annual basis across the City over the coming years.

Primarily because of our urban reliance on petroleum products and on transportation based on petroleum products, oil and grease (O&G) is also ubiquitous in urban runoff. While it tends to be at relatively low average concentrations, nonetheless, O&G is one pollutant that is readily visible on water surfaces, even at very low concentrations. Further, it can have devastating effects on wildlife and aquatic life if present in sufficient quantities. Recognizing this, the City has, in more recent times, informally required the use of oil/water separators on commercial sites to capture parking lot runoff. We recommend that White Rock strengthen this general practice by establishing a specific performance target for O&G in urban runoff.

As noted, bacteria (represented by fecal coliforms) has already had a negative impact on the community, through local shellfish closures. If it were to become more serious, beach closures could occur. Further, it is possible, under certain conditions, to contaminate aquifers with bacteria. Thus, we recommend that White Rock establish a specific performance target for fecal coliforms in urban runoff for new and redevelopment projects in the City.

Bacteria are a challenge to remove from urban runoff for a variety of reasons. First, as long as there are domestic and wild animals in the urban environment, there will be fecal coliforms available for pick up in urban runoff. Unless there is a specific concern with a small number of animal species that can be targeted², it will be difficult to eliminate coliforms from runoff. Programs to encourage and require dog "poop pick up" help, but they are generally a drop in the bucket when considered over an entire watershed or community. Second, while some bacteria can be removed along with TSS, typical end-of-pipe treatment systems do not remove bacteria (though more natural systems which encourage contact with soil appear to). Positive elimination of bacteria generally requires the use of intensive technology, as for example chlorination and exposure to UV light used in sewage treatment plants. Thus, we recommend that the fecal coliform performance target be seen as a goal to reach over time, recognizing that it may be a challenging one to reach. It is worth noting that treatment that relies on filtration through organic soils naturally provides removal of fecal coliforms. Thus, low impact biofiltration systems will be able to meet this target.

Finally, trace metals, which are also ubiquitous in urban runoff, can be quite toxic at higher concentrations. Metals appear in both dissolved and particulate form in runoff, the ratio being a function of the metal consideration, the water chemistry of the runoff, and presence of other solids that can absorb or adsorb the element. The portion of metals that is particulate can be removed with other suspended solids; however, it is sometimes difficult to remove metals because they tend to be associated with fine particulates (smaller than a fine sand) which are harder to settle from the water column or are dissolved in the runoff. Filtration is one readily available mechanism to capture the fine particles. While performance targets could be set for all metals, we recommend setting the target for two particularly important trace metals, copper and zinc.

 $^{^2}$ For example, to cite one common urban problem, high concentrations of geese at urban ponds or large grassed playfields can yield very high fecal coliform counts. Some communities in the U.S. have identified this as a significant NPS issue and taken steps to remove or eliminate geese.

The purpose of these performance targets is two-fold. In terms of this ISMP, having targets allows comparison of alternate management strategies or, put differently, allows for "apples to apples" comparisons. In terms of implementing the ISMP, having targets puts all everyone (public and private alike) on an even footing with respect to what is expected for runoff quality controls.

Table D.2 provides additional background on these NPS pollutants and on the rationale for targeting them for elimination or removal from runoff.

Table D.2: Targeted Non-Point Source Pollutants

	Pollutant							
Characteristic	Total Suspended Solids (TSS)	Coliforms	Hydrocarbons	Dissolved Metals (Cu and Zn)				
Considered a deleterious substance?	Yes	Yes	Yes	Yes				
Potential impact on human health								
Impact on beach recreational use	No	Yes	Yes if direct contact	No				
Impact on drinking water	No – N/A	No – N/A	No – N/A	No – N/A				
Potential impact on marine species								
Impact on fish	Yes	No	Yes	Yes				
Impact on shellfish	No (at expected levels)	No (yes for shellfish harvesting by humans)	Yes	No (at expected levels)				
Impact on mammals and birds	No	No	Yes	No (at expected levels)				
Potential impact on freshwater species								
Impact on fish	NA – not discharging to streams	NA – not discharging to streams	NA – not discharging to streams	NA – not discharging to streams				
Impact on mammals and birds	NA – not discharging to streams	NA – not discharging to streams	NA – not discharging to streams	NA – not discharging to streams				
Impacts at acute or chronic levels?	Both	Both	Both	Both				
Potential sour ces	Runoff from roads and land (landscaping, building construction)	Animal waste (pets, wildlife), humans (cross connections or leaks in the sanitary system)	Road runoff (vehicle fuel, oil, grease)	Road runoff (vehicle wear and tear), residences (galvanized metal fences, anti- moss roof and lawn treatments)				
Pollutant loading								
Estimated pollutant loading (based on existing development conditions)	52,100 Kg/year	700 trillion colonies/year	N/A	Dissolved Copper – 3 Kg/year Total Copper – 14 Kg/year Dissolved Zinc – 200 Kg/year Total Zinc – 350 Kg/year				
Exceed BC Water Quality Guidelines for Protection of Aquatic Life?	No (though likely for individual samples) Annual average concentration = 43 mg/L	Yes	No (though possible for individual samplඏ) Typical concentration < 10 mg/L	Yes Annual average concentration = 0.012 mg/L (Total Copper) Annual average concentration = 0.270 mg/L (Total Zinc)				
Expected prevalence in White Rock	Yes	Yes	Yes	Yes				
Indicator of other pollutants?	Yes (particulate metals)	Yes (other bacterial pathogens)	No	No				
Ability to monitor	Yes	Yes	Yes	Yes				

URBANSYSTEMS.

	Pollutant						
Characteristic	Total Suspended Solids (TSS)	Coliforms	Hydrocarbons				
Ability to treat	Yes	Yes	Yes				
Performance targets							
Performance Target	Remove or reduce 90% of the annual average load, with an average maximum concentration of 30 mg/L for any system discharging to a storm drain, ditch or the Bay	≤200/100 mL (geometric mean)	≤10 mg/L (mean)				
BC Water Quality Guidelines for Protection of Aquatic Life	Maximum induced (above background) TSS in 24 hours is 25 mg/L when background up to 250 mg/L	<i>E coli</i> ≤14/100 mL (median) for shellfish harvest ≤77/100 mL (geometric mean) for primary contact recreation (swimming) ≤385/100 mL (geometric mean) for secondary contact recreation (boating)	For oil and grease in freshwater (no marine water guideline), surface water should be free of petroleum, animal or vegetable oils				
DFO Land Development Guidelines	During construction, maximum induced (above background in receiving stream) TSS is 25 mg/L during dry weather and 75 mg/L during storm events; no allowance when discharging to spawning areas of streams; Post-development conditions, no guideline	N/A	No (but one can infer from the guidelines that oil separator designs must remove oil droplets 60 microns or larger)				
Cost-effective to meet target?	TBD	TBD	TBD				
Other information to rationalize target	TBD	TBD	TBD				

Integrated Stormwater Management Plan

			_
CI	N	Λ	
		м	_

Dissolved Metals (Cu and Zn)
Yes
Remove or reduce 50% of the annual average loads for both total copper and total zinc
For marine water (no guideline for dissolved metals): Copper (total) 0.003 mg/L maximum Zinc (total) 0.010 mg/L maximum
N/A
TBD
TBD

URBANSYSTEMS.

Section 3 – Treatment Strategies

There are three key strategies available to reduce the non-point source (NPS) pollution washed into the Bay from White Rock's urban surfaces:

- Reduce the total runoff volume;
- Reduce the total mass of pollution-generating substance(s) on urban surfaces that can be picked up by runoff; and
- Remove the NPS pollutants from urban runoff at any of several points along the conveyance path to a receiving water body.

These strategies should generally be applied in sequence, that is, the first approach should be to reduce runoff volume since it addresses at least two aspects of stormwater management, namely volume and water quality. Reducing or minimizing the impervious footprint of roads, parking lots and buildings should be considered first, followed by disconnecting impervious areas from direct discharge to storm drains and ditches. Finally, any BMP which relies heavily on evaporation, transpiration and/or infiltration will reduce runoff volume. The methods related to this strategy can generally be classified as "low impact development" (LID) BMPs.

Because White Rock is basically fully developed and will likely undergo redevelopment only over a very long time horizon, it may not be possible to achieve significant results in the short term with some of the methods noted for runoff volume reduction. Thus the next line of defense is to reduce the mass of pollutants that can potentially be washed off urban surfaces. Limits or prohibitions on pesticide and herbicide use are examples of BMPs that address this strategy.

But many of the materials that accumulate on urban surfaces (primarily impervious surfaces, but also pervious surfaces, in some cases) cannot be reduced so easily. For example, as long as the automobile remains our primary transportation mode, the minute but cumulative breakdown of brakes, tires and other components of autos along with the minute but cumulative breakdown of road surfaces will yield a significant mass of fine sediments (including trace metals) and petroleum hydrocarbon products that pollute stormwater. For such pollutants, an alternate BMP is the use of state-of-the-art, high efficiency street cleaners. If properly pursued on a frequent enough schedule, use of street cleaning could prove quite effective in keeping sediments out of runoff. Street cleaning could be applied to both public ROW as well as commercial and institutional parking lots. Not surprisingly, street cleaning does have high operating and maintenance costs attached. As an interim measure between today and a future when redevelopment has occurred sufficiently for LID to become a significant factor in controlling runoff, street cleaning may be cost effective; it will have to carefully compared with the costs of removing pollutants by other BMPs.

The final strategy, "treating" runoff at any of several points along its conveyance system from sources to receiving water bodies, includes a wide variety of LID as well as more conventional BMPs. Because some areas of the City may not support the use of infiltration (see hydrogeology appendix), LID systems such as rain gardens, planter boxes and biofiltration swales ("bioswales") can be used with perforated underdrains that overflow to storm drains

(or ditches). In that case, LID may not reduce runoff volume but will primarily act for water quality treatment. These would be placed before conveyance systems (storm drains), that is, on individual properties and in road ROW. Other types of BMPs that could be suitable for White Rock include oil/grit separators; manufactured vaults that provide primary treatment to remove sediments (and other pollutants associated with sediments); manufactured systems providing more advanced or enhanced treatment, including filtration, disinfection and absorption of dissolved pollutants such as metals; and sand and amended sand filters.

As noted in the previous paragraphs, some NPS control options could serve as interim management measures and thus their cost-effectiveness will likely be highly dependent on time horizons until lower impact BMPs can be installed. It will be very helpful on formulating a water quality management strategy for the City to give some thought to the timing for new and re-development.

Other considerations in formulating an overall water quality management strategy include:

- Public versus private installation and ownership of BMPs;
- Location and timing of other infrastructure improvements, particularly storm conveyance system; and
- Requirements for "pretreatment" of runoff that is infiltrated in locations above the City's water supply aquifer; this is especially critical for roadway runoff, which tends to be the single largest category of pollutant generator in urban areas.

The overall water quality management strategy will likely rely heavily on the long-term implementation of LID within the City, along with a mix of more "technology-dependent" BMPs that are either interim measures or are applied in hot spot areas where LID may not be suitable and/or the City wishes to retain greater control over the operation and maintenance of the systems.

Section 4 – Modeling and Assessment

Using the model WinSLAMM (Version 9.4), pollutant loads were developed for all 18 catchments within the City, for both existing and future conditions. Within the margin of error associated with the model, and given the limited overall change in land use envisioned for the City as presented in the OCP, future pollutant loads are essentially the same as existing pollutant loads. Thus, for the assessment, future conditions only were used to test several management strategies. In each case, we applied the alternative strategy uniformly across all 18 catchments in order to set "upper limits" to the potential benefits of the strategies.

WinSLAMM is a Windows-based version of the U.S. Geological Survey's model SLAMM (Source Loading and Management Model). The model was originally developed to better under the relationships that exist between sources of urban runoff pollutants and runoff quality. It has been continually expanded since the late 1970s and now includes a wide variety of source and outfall control practices.

Win SLAMM was used in a variety of notable studies such as the DuPage Watershed Plan, Humber River basin in Toronto, New York City's municipal watersheds (Kensico Reservoir, for one) and others. This model is widely

accepted by leading scientists and government agencies throughout the U.S. and was used as part of the White Rock ISMP for the following reasons:

- It emphasizes small storm hydrology and particulate runoff rather than focusing on very large and rare rainfall events (a feature of drainage models). This was vital because empirical evidence has shown that stormwater quality problems are mostly associated with frequent and relatively small rains;
- Its results and assumptions are strongly based on actual field observations;
- It has the ability to examine a wide variety of source area and outfall control practices (BMPs); and,
- It has the ability to consider many stormwater controls (affecting source areas, drainage systems, and outfalls) together, for a long series of rains.

In formulating strategies, the three key strategies noted above were used as a framework for identifying the alternatives for assessment. Obviously unworkable strategies were dismissed early; specifically, the use of wet ponds and stormwater wetlands in White Rock was dismissed as there is very little space available for their use. In modeling, each strategy was applied evenly over all catchments, in order to establish an upper limit for pollutant control results. The alternative treatment strategies are listed in Table D.3.

Key Strategy	Treatment Alternative	Features
#1 - Reduce runoff volume	Use infiltration to reduce total annual runoff volume	Per provincial guidelines, capture ½ Mean Annual Rainfall (MAR), assumed to be 30mm over 24 hours
#2 - Reduce total mass of pollutants	Apply street cleaning	Use high performance street cleaning equipment, applied at four different rates (twice per year; once per month; once per week; daily)
#3 – Remove pollutants once entrained in runoff	Install "green" infrastructure throughout City	Use biofiltration systems; per provincial guidelines, capture ½ MAR; apply to all properties and ROWs
	Install end-of-pipesediment removal systems	"Primary" or "pre-treatment" systems to remove coarse sediments and oil & grease
	Install end-of-pipe advanced filtration systems	"Higher level" enhanced treatment systems to remove sediments, oil & grease, dissolved metals and bacteria

Table D.3: Treatment Alternatives for Analysis

Biofiltration systems include planter boxes, rain gardens, bioswales, as well a few proprietary systems such as the "Filterra" system (which is essentially a "tree in a box with filtration"). Primary treatment systems include proprietary (manufactured) systems such as "StormCeptor", "Vortechs" and "CDS". Public domain systems such as a simple concrete vault were also assumed to provide similar treatment capabilities, as long as they are designed with a hydraulic loading rate equivalent to proprietary systems and include baffles or similar oil skimming devices. Enhanced treatment systems also included both proprietary systems (e.g., "StormFilter") and public domain systems (multi-chambered treatment train; sand filters). In general, systems that encourage contact between the runoff and soils and/or filter media, such as activated carbon or zeolite, can provide bacteria removal. In theory both primary and enhanced treatment systems can be upgraded to provide disinfectant capabilities; however, disinfection is much more efficient when preceded by enhanced treatment.

The catchment boundaries were the same as those used in the screening report prepared in 2007³. Total area modeled was 472.7 hectares, of which 57.3% is impervious surfaces (mostly buildings, parking lots, driveways, sidewalks and streets). A few minor areas of the City, typically areas without storm drains, are not included in the total. Also, areas within Surrey that contribute runoff to White Rock's drainage system have been ignored. The catchment boundaries and areas are shown on Figure D.1.

Early runs showed that though land uses change slightly over time between now and the future (as represented by the City's Official Community Plan, or OCP), the overall effect is well within the margin of error of the model. Therefore, only the future conditions were assessed against the various treatment strategies. Figure D.2 shows the future land use conditions. Other land use conditions also affect the results.

Hourly precipitation records for the White Rock area (White Rock STP; Environment Canada Station 1108914) were used for model. Complete data were available, however, for only four years (2000, 2001, 2005 and 2006), so the model was run as if these were four consecutive years. The annual rainfall for these years varied between 949 mm and 1,109 mm, with a mean of 1,037 mm. According to Environment Canada, the average annual precipitation at White Rock STP for the period 1971 to 2000 is 1,102 mm; thus the four year period used in the analysis was near average if somewhat drier than normal. For purposes of the analysis, this difference is negligible. There were 638 storm, or rain, events during the four year simulation period. An inter-event dry period of at least six (6) hours was used to determine whether a new event was occurring.

The Mean Annual Rainfall (MAR) is 57.8 mm in 24 hours, again based on the period 1971 to 2000; the MAR is a standard measure referenced by the Province in its stormwater guidelines. Upwards of 90% of the annual volume of rainfall occurs in events less than the MAR.

The model includes a number of loading factors for pollutants. With minor modifications, these factors were used as is.

³ Urban Systems, Ltd., "Water Quality Screening Assessment, Draft Report", September 2004, for City of White Rock.

Some of the other conditions within the City accounted for in the model are:

- Multiple land uses (See Table D.4)
- Connected versus disconnected impervious surfaces (see Table D.5 and Figure D.3)
- Pitched versus flat roofs (see Table D.6)
- Both streets (arterial; collector; local) and alleyways/lanes (see Table D.7)
- Variable soils infiltration rates (see Table D.8)

For purposes of modeling, the presence of catch basins, some of which may have sumps for capturing grit, was ignored.

One treatment strategy focuses on providing biofiltration systems within the City's streets and alleyways/lanes; however some of these are quite steep and may not be suitable for such systems. Figure D.4 shows all ROWs within the City that have a profile slope of less than or equal to 6%; it is assumed that biofiltration can be utilized on these streets. The figure also shows areas of the City with more or less than overall grade of 10%. Even though a street may have a profile less than 6%, the overall topography, if steep, may place space limits on biofiltration.

Runoff inflow from Surrey was ignored in the analysis; thus sizing of end-of-pipe treatment systems are slightly undersized with respect to treating runoff from both the City and its neighbor. When the City decides to implement installation of facilities that could treat runoff from Surrey, appropriate coordination and reengineering will be required.

The model functions in English units, rather than metric, thus all input and output were carefully checked to ensure consistency.

Results from all simulations, by catchment, can be found at the end of this appendix. Figures D.9(a) shows the estimated annual total suspended (TSS) loadings for future conditions without the application of a treatment strategy while Tables D.9(b) through (k) show the loads for each of the treatment strategies as well as providing the estimated construction and O&M costs; Table D.10 summarizes the results across all catchments for the alternative management strategies.

Cost estimates were made for all the treatment strategies. Costs for construction (i.e., capital cost) and for operation and maintenance (as well replacement in the case of street sweepers) were estimated at a Class D level. Capital costs include construction cost plus engineering and administrative costs (20% of construction cost) and contingency (35% of construction); for the street sweeper alternatives, only administrative costs (5%) and contingency (35%) were added under the assumption that engineering-related costs would be negligible. Operation and maintenance costs were generally estimated based on a percentage of the capital costs, based on literature values for use of best management practices.

Table D.10 summarizes the estimated costs. TSS has been used as the focus for assessing the cost per pollutant removal, although any of the targeted pollutants could have been used.

Section 4 – Recommendations

Based on the analysis of runoff quality and potential strategies for treating urban runoff pollution in White Rock, we recommend the following overall runoff quality strategy for the City:

For public infrastructure:

- Provide low impact biofiltration systems and, where feasible, narrower streets and/or porous asphalt parking lanes, for as many streets and lanes as possible within the City, as shown on Figure D.6; and
- For the catchments identified in Figure D.6, provide end-of-pipe enhanced treatment to remove suspended sediments, coliforms and oil & grease, along with metals and other pollutants associated with the sediments. End of pipe systems should meet the performance standards discussed earlier in this appendix. The targeted catchments are characterized by high density development, including commercial and multi-family.

For new and redevelopment:

- For single family residential, at minimum, provide 300 mm of amended topsoils and discharge roof leader to the ground (rather than to storm drains) or to a biofiltration system; and
- For commercial, institutional and multi-family residential, provide 300 mm of amended topsoils in grassed areas and use low impact BMPs to provide treatment and infiltration (where allowable).

In addition, we encourage retention of existing and planting of new trees wherever possible, throughout the City. Large, mature trees, especially native coniferous trees, provide significant runoff reduction benefits, which in turn mean less pollution is washed into the City's storm systems.

Some areas of the City have been identified as unsuitable for infiltration of runoff (Zone B, as shown in the hydrogeology appendix). In these areas, low impact BMPs may be used, but only when provided with a perforated underdrain system. The underdrains intercept runoff before it is infiltrated and redirect it to the City's storm drains. While this means that runoff volume will not be significantly reduced, it does mean that runoff will have been provided treatment through contact with soil prior to eventual discharge to the Bay.

It is absolutely critical that whatever systems are finally implemented be maintained and replaced over time in order to obtain the desired runoff quality treatment.

Integrated Stormwater Management Plan

> Catchment Boundaries

Catchment Boundary

Official Community Plan

Single Family Residential

Multi-Family Residential

Commercial

Comprehensive Development

Land Use Contract

Open Space, Parks and Recreation

Integrated Stormwater Management Plan

Future Land Use

Catchment Boundaries

Zone of Roof Leader Connections to Storm Drain

Zone of Roof Leader Disconnects

Note: Zone designation based on "Comprehensive Drainage Study - 2004 Update"

> Integrated Stormwater Management Plan

Roof Leader Connection Specified Areas

Streams

Road Slope: 0 to 3 %

Road Slope: 3 to 6 %

Topography With Slope Less Than 10%

Catchment Boundaries

Integrated Stormwater Management Plan

Streets Potentially Suitable for **Biofiltration Systems**

Streams

Roads for ROW Biofiltration Systems - Recommended

Roads for ROW Biofiltration Systems - More Study Required

End-of-Pipe Enhanced Treatment - Recommended

Catchment Boundaries

Integrated Stormwater Management Plan

Potential Water Quality Infrastructure

Table D.4 - Impervious Area by Catchment and Land Use Type

NOTE: Areas listed in ACRES Future Conditions - City of White Rock

NOTE: Areas list	ed in ACRES											
Future Cond	itions - City	of White R	lock						Existing Co	nditions - C	ity of White	e Rock
						Total			· · · ·			
					Total	Catchment	Pervious Area		Catchment			
Catchment No.	Commercial	Institutional	Residential	Roads	Impervious	Area (acres)	(acres)	% Impervious	No.	Commercial	Institutional	Resident
1	0.000	0.105	13.399	7.69	21.191	40.6490	19.4576	52.13%	1	0.000	0.000	11
2	0.904	0.248	25.382	14.40	40.937	78.2108	37.2741	52.34%	2	0.620	0.000	21
3	0.000	0.000	16.782	9.36	26.142	50.9002	24.7587	51.36%	3	0.000	0.000	14
4	0.000	0.000	8.556	5.20	13.755	27.3806	13.6251	50.24%	4	0.000	0.000	7
5	0.000	0.000	5.972	3.80	9.772	19.5128	9.7405	50.08%	5	0.000	0.000	é
6	0.000	12.238	21.047	6.73	40.017	65.4832	25.4664	61.11%	6	0.000	7.831	8
7	0.000	9.099	15.816	12.24	37.160	76.3426	39.1831	48.67%	7	0.000	4.735	16
8	0.000	0.000	4.691	4.36	9.055	16.6166	7.5612	54.50%	8	0.000	0.000	5
9	18.645	1.079	41.543	29.64	90.908	137.8305	46.9228	65.96%	9	13.319	1.244	44
10	4.028	0.000	5.472	4.82	14.321	20.7584	6.4370	68.99%	10	4.052	0.000	5
11	1.948	0.000	11.183	18.20	31.334	44.6750	13.3411	70.14%	11	1.955	0.960	17
12	5.353	4.690	38.750	51.09	99.886	156.4281	56.5416	63.85%	12	5.089	6.155	43
13	1.486	0.000	2.062	5.43	8.980	11.5073	2.5270	78.04%	13	1.452	0.000	3
14	0.001	0.824	10.112	5.79	16.725	33.6908	16.9657	49.64%	14	0.613	1.285	11
15	0.828	0.454	18.451	10.20	29.935	61.6599	31.7249	48.55%	15	0.644	0.978	22
16	0.335	0.589	18.648	12.74	32.307	58.5758	26.2686	55.15%	16	0.000	0.911	18
17	0.000	3.195	33.145	19.83	56.170	110.5021	54.3326	50.83%	17	0.000	2.109	28
18	7.048	5.720	44.991	32.58	90.335	157.2697	66.9345	57.44%	18	4.181	2.664	50
Total	40.576	38.241	336.002	254.112	668.931	1167.9932	499.0625	57.27%	Total	31.925	28.872	336
								57.17%				
Future vs. old												
Catchment No.	Increase/decr	ease in imper	vious area		% change							
1	2.451				6.03%							
2	4.332				5.54%							
3	2.596				5.10%							
4	1.283				4.69%							
5	-0.340				-1.74%							
6	17.324				26.46%							
/	3.318				4.35%							
8	-0.698				-4.20%							
9	2.062				1.50%							
10	0.340				1.64%							
11	- 7.516				-16.82%							
12	-5.499				-3.52%							
13	-1.899				-16.50%							
14	-2.417				-7.17%							
15	-4.306				-6.98%							
16	0.130				0.22%							
1/	5.627				5.09%							
18	0.552				0.35%							
Total	17.341				1.48%							

-						Total		
Catchment					Total	Catchment	Pervious Area	
No.	Commercial	Institutional	Residential	Roads	Impervious	Area (acres)	(acres)	% Impervious
1	0.000	0.000	11.053	7.69	18.741	40.6490	21.9082	46.10%
2	0.620	0.000	21.582	14.40	36.605	78.2108	41.6056	46.80%
3	0.000	0.000	14.186	9.36	23.545	50.9002	27.3550	46.26%
4	0.000	0.000	7.273	5.20	12.472	27.3806	14.9083	45.55%
5	0.000	0.000	6.312	3.80	10.112	19.5128	9.4009	51.82%
6	0.000	7.831	8.130	6.73	22.693	65.4832	42.7906	34.65%
7	0.000	4.735	16.862	12.24	33.842	76.3426	42.5010	44.33%
8	0.000	0.000	5.389	4.36	9.753	16.6166	6.8635	58.69%
9	13.319	1.244	44.642	29.64	88.846	137.8305	48.9844	64.46%
10	4.052	0.000	5.108	4.82	13.981	20.7584	6.7772	67.35%
11	1.955	0.960	17.732	18.20	38.850	44.6750	5.8253	86.96%
12	5.089	6.155	43.048	51.09	105.385	156.4281	51.0430	67.37%
13	1.452	0.000	3.994	5.43	10.879	11.5073	0.6283	94.54%
14	0.613	1.285	11.457	5.79	19.142	33.6908	14.5487	56.82%
15	0.644	0.978	22.417	10.20	34.241	61.6599	27.4188	55.53%
16	0.000	0.911	18.531	12.74	32.177	58.5758	26.3984	54.93%
17	0.000	2.109	28.604	19.83	50.542	110.5021	59.9598	45.74%
18	4.181	2.664	50.362	32.58	89.783	157.2697	67.4868	57.09%
Total	31.925	28.872	336.681	254.112	651.589	1167.9932	516.4038	55.79%
								56.94%

res	com	ins	pervious
2.346	0.000	0.105	-2.451
3.800	0.284	0.248	-4.332
2.596	0.000	0.000	-2.596
1.283	0.000	0.000	-1.283
-0.340	0.000	0.000	0.340
12.917	0.000	4.408	-17.324
-1.046	0.000	4.364	-3.318
-0.698	0.000	0.000	0.698
-3.099	5.326	-0.165	-2.062
0.364	-0.024	0.000	-0.340
-6.549	-0.007	-0.960	7.516
-4.298	0.264	-1.465	5.499
-1.932	0.034	0.000	1.899
-1.345	-0.612	-0.461	2.417
-3.966	0.184	-0.524	4.306
0.117	0.335	-0.322	-0.130
4.541	0.000	1.086	-5.627
-5.371	2.867	3.056	-0.552

8.651

-17.341

9.369

change future - existing

-0.679

Table D.5 - Roof Leader Disconnections

Roof Leader Disconnected		Roof Lead	er Connected	Percentage Connected		
					Percentage	
Catchment No.	Acres	Catchment No.	Acres	Catchment No.	Connected	
1	36.44	1	2.43	1	6.26%	
2	63.62	2	11.87	2	15.72%	
3	46.94	3	1.70	3	3.49%	
4	26.33	4	1.06	4	3.86%	
5	17.77	5	1.74	5	8.91%	
6	18.22	6	45.91	6	71.59%	
7	0.00	7	72.79	7	100.00%	
8	0.00	8	14.06	8	100.00%	
9	0.00	9	135.37	9	100.00%	
10	0.00	10	18.46	10	100.00%	
11	0.00	11	42.10	11	100.00%	
12	34.90	12	121.43	12	77.68%	
13	0.00	13	8.01	13	100.00%	
14	0.00	14	30.02	14	100.00%	
15	19.50	15	41.59	15	68.08%	
16	54.65	16	2.93	16	5.09%	
17	100.70	17	8.85	17	8.08%	
18	72.77	18	77.94	18	51.72%	

Based on Figure from 2004 study

Table D.6 - Pitched and Flat Roofs

		Area ii	n Acres	Area	in Acres	Area in Acres	
Catchment No.	Pi	tched	Flat	Pitched Connected	Pitched Disconnected	Flat Connected	Flat Disconnected
	1	10.69	0.36	0.669055161	10.02	0.022550031	0.34
	2	20.13	2.08	3.164004905	16.96	0.326220754	1.75
	3	13.63	0.55	0.475327472	13.16	0.019350237	0.54
	4	7.05	0.22	0.272193772	6.78	0.008419001	0.21
	5	6.12	0.19	0.545615601	5.58	0.016870575	0.17
	6	8.08	7.88	5.784627906	2.30	5.641309732	2.24
	7	14.83	6.77	14.8281	0.00	6.7691	0.00
	8	5.23	0.16	5.2271	0.00	0.1617	0.00
	9	26.69	32.51	26.6947	0.00	32.5107	0.00
	10	2.99	6.17	2.9871	0.00	6.1727	0.00
	11	15.85	4.80	15.8481	0.00	4.7991	0.00
	12	35.89	18.41	27.8761521	8.01	14.2967951	4.11
	13	3.76	1.68	3.7632	0.00	1.6835	0.00
	14	7.84	5.51	7.8405	0.00	5.5136	0.00
	15	21.72	2.32	14.78570145	6.93	1.580522892	0.74
	16	17.51	1.94	0.891811696	16.61	0.098697903	1.84
	17	27.69	3.02	2.236881091	25.45	0.244343165	2.78
	18	39.45	17.75	20.40425592	19.05	9.181387648	8.57

ations	*/
6 Pitched %	Flat
97	3
0	100
0	100
100	0
3	97
	rations 6 Pitched % 97 0 0 100 3

Assumed the areas drained to are silty

Table D7 - Length of Streets and Lanes

		Length per road	l type in feet					
Catchment No.	Alleyway/Lane	Arterial	Collector	Local/Street	Total Length		≤6% Grade	%
	(ft)	(ft)	(ft)	(ft)	(ft)	(miles)	(ft)	
1			1617.98	3511.65	5129.63	0.971520471	1262	24.60%
2	501.84		2771.27	11549.38	14822.49	2.807288957	1437	9.69%
3			1059.74	6327.06	7386.80	1.399015152	3896	52.74%
4			698.86	5740.83	6439.69	1.219638432	120	1.86%
5	564.64		605.09	3682.78	4852.51	0.919036396	857	17.66%
6			1349.91	6768.51	8118.42	1.537579545	1124	13.85%
7	518.62		1958.11	7924.34	10401.07	1.969899621	1188	11.42%
8	254.63		1090.95	2656.79	4002.37	0.758024941	593	14.82%
9	2116.69	2509.02	5301.36	19536.08	29463.15	5.580142045	3471	11.78%
10			1355.85	2390.38	3746.23	0.709513258	554	14.79%
11	343.25	44.27	2974.87	9888.01	13250.40	2.509545147	3776	28.50%
12	3014.68	1313.94	4218.08	27100.27	35646.97	6.751320076	280	0.79%
13			2570.05	2457.34	5027.39	0.952157197	509	10.12%
14			2582.46	4360.58	6943.04	1.314969697	894	12.88%
15			636.01	11305.18	11941.19	2.261589015	901	7.55%
16			2461.47	8793.54	11255.01	2.131630682	1065	9.46%
17				17454.71	17454.71	3.305816288	7793	44.65%
18	669.54		2841.05	26206.70	29717.29	5.628274621	3156	10.62%

			Area in Acres		
	Infilt Rate = 8 in/hour	Infilt Rate = 0.05 in/hour	Infilt Rate = ? in/hour	Infilt Rate = 0.2 in/hour	Infilt Rate = 0.2 in/hour
Catchment No.	Capilona Sediments (b)	Capilona Sediments (d)	Capilona Sediments (e)	Vasion Drift (a)	Re-Vasion Deposits (a)
1	6.20	31.64	0.00	2.80	0.00
2	26.53	46.03	0.00	5.66	0.00
3	0.00	50.22	0.00	0.68	0.00
4	0.00	26.13	0.00	1.25	0.00
5	0.00	15.22	0.00	4.29	0.00
6	0.00	53.47	0.00	9.97	2.04
7	0.00	69.65	0.00	5.33	1.37
8	0.00	4.48	0.00	7.11	5.03
9	0.00	133.19	0.00	2.92	1.72
10	0.00	7.25	0.00	9.42	4.08
11	0.00	42.02	0.00	2.65	0.00
12	0.00	156.43	0.00	0.00	0.00
13	0.00	11.51	0.00	0.00	0.00
14	0.00	23.02	10.67	0.00	0.00
15	0.00	61.66	0.00	0.00	0.00
16	0.00	58.57	0.00	0.00	0.00
17	15.10	90.46	0.00	4.94	0.00
18	11.35	125.21	0.00	20.70	0.00

Table D8 - Soils Conditions

Table [09(a) - Base Ca	se (Future (Conditions) Loading Re	sults By:	jmr 07 Dec 00																				
	Ν	o Treatment	Base Case	Date.	07-Dec-09	Raw Data I	rom WinSL	AMM, sorte	ed by Catc	hment #:															
									,				Fecal												
													Coliform												
						Particulat	Particulat		Filterable		Total	Fecal	Bacteria		Particulat		Filterable		Total		Particulat		Filterable		
			Annual			e Solids	e Solids		Solids		Solids	Coliform	Concentr		e Copper		Copper		Copper		e Zinc		Zinc		Total Zinc
		Annual	Particulate			Yield for	Concentr	Filterable	Concentr	Total	Concentr	Bacteria	ation	Particulat	Concentr	Filterable	Concentr	Total	Concentr	Particulat	Concentr	Filterable	Concentr		Concentr
	Catchment	Runoff	Solids (TSS)			Alternativ	ation	Solids	ation	Solids	ation	Yield	(#/100	e Copper	ation	Copper	ation	Copper	ation	e Zinc	ation	Zinc Yield	ation	Total Zinc	ation
	Area	Volume	Yield			e (lbs)	(mg/L)	Yield (lbs)	(mg/L)	Yield (lbs)	(mg/L)	(count)	ml)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	(lbs)	(ug/L)	Yield (lbs)	(ug/L)
			<i></i>																						
	(ha)	(m3)	(Kg)																						
1	16.451	143,606	17,079	1,038.2 Kg/ha		37653.68	118.9368	51130.55	161.5784	88784.38	280.5689	9.06E+12	6315.363	4.781375	15.1097	0.699529	2.210594	5.480903	17.32029	42.9316	135.6688	49.03117	154.9442	91.96289	290.6134
2	31.651	303,468	33,069	1,044.8 Kg/ha		72905.32	108.9754	102625.5	153.4683	175530.8	262.4925	1.87E+13	6180.548	9.178909	13.72634	1.513522	2.263353	10.69243	15.98969	83.79563	125.3098	118.6047	177.364	202.4004	302.6739
3	20.603	171,661	24,806	1,204.0 Kg/ha		54687.57	144.5106	63065.06	166.7224	117752.5	311.2974	1.09E+13	6332.848	8.699606	22.99878	0.835373	2.208441	9.534986	25.20724	57.05639	150.8376	56.29726	148.8307	113.3537	299.6684
4	11.081	93,971	16,669	1,504.3 Kg/ha		36748.95	177.3909	34663.57	167.3994	71412.52	344.8697	5.95E+12	6340.891	7.283185	35.1724	0.455592	2.200174	7.738777	37.37257	33.95242	163.9651	30.2742	146.202	64.22664	310.1672
5	8.057	72,728	8,530	1,058.7 Kg/ha		18804.57	117.2846	26001.57	162.2451	44806.12	279.582	4.48E+12	6167.395	2.377679	14.83628	0.351826	2.195328	2.729504	17.03161	21.83943	136.274	25.03429	156.2094	46.87368	292.4832
6	26.504	459,024	23,889	901.3 Kg/ha		52666.17	52.04489	135983.1	134.4391	188649.2	186.5071	2.36E+13	5138.51	6.080644	6.0116	2.170794	2.146145	8.251445	8.157753	60.90451	60.21297	242.1208	239.3716	303.0251	299.5844
7	30.899	538,918	35,771	1,157.7 Kg/ha		78861.84	66.37825	168658.8	142.0241	247520.7	208.4321	2.85E+13	5293.149	9.423697	7.935503	2.536684	2.136089	11.96038	10.07159	90.79433	76.45605	259.7046	218.6919	350.4986	295.1477
8	6.722	123,347	7,923	1,178.7 Kg/ha		17467.89	64.2381	30659.69	112.8013	48127.66	177.0684	7.15E+12	5803.137	2.495384	9.18087	0.643914	2.36905	3.139298	11.54992	18.76313	69.03218	66.09533	243.174	84.85828	312.2056
9	55.779	1,230,807	56,846	1,019.1 Kg/ha		125324.1	46.18772	321198.5	118.4294	446522.9	164.6379	7.63E+13	6205.191	18.26896	6.735966	5.857832	2.159847	24.1268	8.895818	183.4764	67.64976	623.0416	229.7223	806.5172	297.3718
10	8.401	191,254	8,478	1,009.2 Kg/ha		18690.61	44.32963	51898.84	123.1466	70589.47	167.4961	1.25E+13	6519.258	2.852954	6.769546	0.861528	2.044251	3.71448	8.813791	30.36223	72.04411	88.15142	209.1674	118.5137	281.2115
11	18.082	394,762	20,328	1,124.2 Kg/ha		44815.62	51.49631	93721.7	107.741	138537.3	159.2603	2.53E+13	6424.345	8.268434	9.505262	1.84101	2.116397	10.10944	11.62165	47.12867	54.17839	173.2781	199.1978	220.4068	253.3763
12	63.311	1,161,893	71,276	1,125.8 Kg/ha		157138	61.34755	301930.9	117.9282	459069	179.3032	7.32E+13	6303.379	26.51783	10.35734	5.425697	2.11917	31.94351	12.4765	164.6866	64.32332	500.4846	195.4793	665.1697	259.8021
13	4.658	106,519	5,125	1,100.3 Kg/ha		11297.82	48.11175	26383.93	112.4062	37681.73	160.5393	7.61E+12	7150.855	2.319769	9.883149	0.452143	1.926313	2.771914	11.80947	12.89028	54.9178	37.90294	161.4818	50.79322	216.3996
14	13.634	238,414	15,757	1,155.7 Kg/ha		34737.98	66.09281	62547.29	119.0563	97285.48	185.1791	1.30E+13	5466.315	4.248057	8.086011	1.28528	2.44648	5.533339	10.53249	39.65777	75.48701	139.5959	265.7153	179.2535	341.2021
15	24.949	352,885	28,251	1,132.3 Kg/ha		62282.71	80.06011	101088.4	130.0002	163371	210.0961	2.00E+13	5662.889	7.470957	9.607695	1.887091	2.42681	9.358048	12.0345	73.19073	94.1237	191.2623	245.9644	264.4527	340.0878
16	23.707	218,739	24,514	1,034.0 Kg/ha		54044.23	112.0739	75085.95	155.7787	129130.2	267.9028	1.42E+13	6486.355	7.299064	15.14316	1.029563	2.136005	8.328628	17.27917	60.14856	124.7885	69.10635	143.373	129.2548	268.1614
17	44.719	388,170	46,897	1,048.7 Kg/ha		103390.1	120.8201	141354.8	165.2589	244745	286.1333	2.41E+13	6225.221	12.80748	14.97332	1.894849	2.215282	14.70233	17.18861	118.9499	139.0653	134.2059	156.9012	253.1558	295.9664
18	63.642	892,507	66,000	1,037.1 Kg/ha		145504.9	73.95169	257647.8	131.006	403153.1	204.991	5.47E+13	6135.967	19.74859	10.04156	4.373405	2.223743	24.12199	12.26529	169.0188	85.94091	409.6734	208.3064	578.6916	294.247
	472.850	7,082,673	511,208	1,081.1 Kg/ha		1127022		2045646		3172669		4.29E+14		160.1226		34.11563		194.2382		1309.547		3213.865		4523.408	

Table [09(b) - Primar	y Treatment	Strategy Co	sts & Loading	g Results						By: Date:	jmr 07-Dec-09																					
		No Treatment B	lase Case	Alternative Stra	tegy - Primary	Treatment					Revised:	10-Apr-10	Raw Data fo	r alternative	e, from Win	ISLAMM, so	orted by Cat	chment #:															
																					Fecal												
														Darticulat	Darticulat		Filtorablo		Total	Focal	Ractoria		Particulat		Filtorablo		Total		Darticulat		Eiltorablo		
			Annual		Annual									o Solide	o Solide		Solide		Solide	Coliform	Concentr		o Connor		Connor		Conner		a 7inc		Zinc		Total 7inc
			Particulate		Particulate									Vield for	Concentr	Filterable	Concentr	Total	Concentr	Racteria	ation	Particulat	Concentr	Filterable	Concentr	Total	Concentr	Particulat	Concentr	Filterable	Concentr		Concentr
	Catchment	Annual Runoff	Solids (TSS)	Annual Runoff	Solids (TSS)	Removal	Treatment		Annual O&M	Total Cost	\$ per Ka TSS		Runoff	Alternativ	ation	Solids	ation	Solids	ation	Yield	(#/100	e Conner	ation	Copper	ation	Copper	ation	e Zinc	ation	Zinc Yield	ation	Total Zinc	ation
	Area	Volume	Yield	Volume	Yield	Efficiency	Design Flow	Capital Cost*	Cost	over 20 Years	Removed		Volume (cf)	e (lbs)	(mg/L)	Yield (lbs)	(ma/L)	Yield (lbs)	(ma/L)	(count)	ml)	Yield (lbs)	(ug/l)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/l)	Yield (lbs)	(ug/l)	(lbs)	(ug/L)	Yield (lbs)	(ua/l)
						,			4.0%					- ()	((()	((,		(9)	()	(-9)		(-3)		(9)	()	(9)		(-9)
	(ha)	(m3)	(Kg)	(m3)	(Kg)		(L/s)	(\$)	(\$/yr)	(\$)																							
1	16.451	143,606	17,079	143,606	8,540	50.0%	122	\$168,100	\$6,720	\$302,500	\$1.77		5071220	18826.84	59.4684	51130.55	161.5784	69957.39	221.0468	9.06E+12	6315.363	2.390688	7.55485	0.699529	2.210594	3.090217	9.765444	21.4658	67.8344	49.03117	154.9442	70.49697	222.7786
2	31.651	303,468	33,069	303,468	16,535	50.0%	5 414	\$335,400	\$13,420	\$603,800	\$1.83		10716470	36452.66	54.4877	102625.5	153.4683	139078.2	207.956	1.87E+13	6180.548	4.589455	6.86317	1.513522	2.263353	6.102977	9.126523	41.89782	62.6549	118.6047	177.364	160.5025	240.0189
3	20.603	171,661	24,806	171,661	12,403	50.0%	478	\$363,800	\$14,550	\$654,800	\$2.64		6061920	27343.79	72.2553	63065.06	166.7224	90408.85	238.9777	1.09E+13	6332.848	4.349803	11.49939	0.835373	2.208441	5.185176	13.70783	28.5282	75.4188	56.29726	148.8307	84.82546	224.2495
4	11.081	93,971	16,669	93,971	8,334	50.0%	5 120	\$166,600	\$6,660	\$299,800	\$1.80		3318446	5 18374.48	88.69545	34663.57	167.3994	53038.05	256.0949	5.95E+12	6340.891	3.641593	17.5862	0.455592	2.200174	4.097185	19.78637	16.97621	81.98255	30.2742	146.202	47.25041	228.1846
5	8.057	72,728	8,530	72,728	4,265	50.0%	5 120	\$166,600	\$6,660	\$299,800	\$3.51		256828	7 9402.285	58.6423	26001.57	162.2451	35403.86	220.8874	4.48E+12	6167.395	1.18884	7.41814	0.351826	2.195328	1.540665	9.613468	10.91972	68.137	25.03429	156.2094	35.95401	224.3464
6	26.504	459,024	23,889	459,024	11,944	50.0%	5 164	\$198,700	\$7,950	\$357,700	\$1.50		16209700	26333.09	26.02245	135983.1	134.4391	162316.2	160.4615	2.36E+13	5138.51	3.040322	3.0058	2.170794	2.146145	5.211116	5.151945	30.45226	30.10649	242.1208	239.3716	272.5731	269.4781
7	30.899	538,918	35,771	538,918	17,885	50.0%	186	\$213,400	\$8,540	\$384,200	\$1.07		19031030	39430.92	33.18913	168658.8	142.0241	208089.7	175.2132	2.85E+13	5293.149	4.711849	3.967752	2.536684	2.136089	7.248533	6.103841	45.39717	38.22803	259.7046	218.6919	305.1018	256.9199
8	6.722	123,347	7,923	123,347	3,962	50.0%	95	\$145,900	\$5,840	\$262,700	\$3.32		435581	1 8733.945	32.11905	30659.69	112.8013	39393.64	144.9204	7.15E+12	5803.137	1.247692	4.590435	0.643914	2.36905	1.891606	6.959485	9.381565	34.51609	66.09533	243.174	75.4769	277.6901
9	55.779	1,230,807	56,846	1,230,807	28,423	50.0%	1,1/3	\$604,300	\$24,170	\$1,087,700	\$1.91		43463960) 62662.05	23.09386	321198.5	118.4294	383860.6	141.5233	7.63E+13	6205.191	9.13448	3.367983	5.857832	2.159847	14.99231	5.52783	91.7382	33.82488	623.0416	229.7223	/14.//98	263.5472
10	8.401	191,254	8,478	191,254	4,239	50.0%	5 14/	\$186,800	\$7,470	\$336,200	\$3.97		6/5383	9345.305	22.16482	51898.84	123.1466	61244.15	145.3114	1.25E+13	0519.258	1.4264//	3.384773	0.861528	2.044251	2.288005	5.429024	15.18112	36.02206	88.15142	209.16/4	103.3325	245.1895
11	18.082	394,762	20,328	394,702	10,104	50.0%	002	\$437,300	\$17,490	\$/8/,100	\$3.87		1394038	J 22407.81	20.74810	93/21./	117 0292	200400.0	140 402	2.03E+13 7.00E-10	6424.345	4.134217	4./02031 E 17047	1.84101 E 43E407	2.11039/	10 40441	7.20704	23.00434	27.0892	1/3.2/81 E00.4944	105 4702	190.8424	220.287
12	4 659	106 510	5 125	1,101,693	2 562	50.0%	972	\$309,000	\$5.410	\$243,400	\$0.75		41030330	5649.01	24.05599	26292.02	112 4062	300499.9	126 /621	7.52E+13 7.61E+12	7150 955	1 150995	4 0/1575	0.452142	1 026212	1 612029	6.967999	6 4 4514	27 /590	27 00204	161 / 010	14 34909	227.041
14	12.624	229 414	15 757	229.425	7 979	50.0%	200	\$227.000	\$0,410	\$410,300	\$2.60		9/1960	7 17269.00	23.04641	62551.44	110.0596	70020 42	152 105	1 20E+12	5466 52	2 12/020	4.042006	1 295 212	2 446420	3 400342	6 490425	10 92990	27.4307	120 5095	265 7079	150 / 27/	1 202 4512
15	24 949	352 885	28,251	352 885	14,125	50.0%	328	\$294,000	\$11,760	\$529,200	\$1.87		12461560	31141.36	40.03006	101088.4	130.0002	132229.8	170 0303	2 00E+13	5662 889	3 735479	4 803848	1.887091	2 42681	5 62257	7 230658	36 59537	47 06185	191 2623	245 9644	227 8577	293.0263
16	23 707	218,739	24,514	218,739	12.257	50.0%	934	\$531,300	\$21,250	\$956,300	\$3.90		772442	2702212	56 03695	75085.95	155 7787	102108.1	211 8157	1.42F+13	6486 355	3 649532	7 57158	1.029563	2 136005	4 679095	9 707585	30 07428	62 39425	69 10635	143 373	99.18063	205 7673
17	44,719	388.170	46.897	388,170	23,448	50.0%	120	\$166.600	\$6.660	\$299.800	\$0.64		13707580	51695.05	60.41005	141354.8	165.2589	193049.9	225.669	2.41E+13	6225.221	6.40374	7.48666	1.894849	2.215282	8.298589	9.701942	59.47495	69.53265	134.2059	156.9012	193.6809	226.4339
18	63.642	892.507	66.000	892.507	33.000	50.0%	156	\$193.200	\$7,730	\$347.800	\$0.53		31517420	72752.45	36.97585	257647.8	131.006	330400.3	167.9818	5.47E+13	6135.967	9.874295	5.02078	4.373405	2.223743	14.2477	7.244523	84,5094	42.97046	409.6734	208.3064	494,1828	251.2769
	472.850	7,082,673	511,208	7,082,684	255,602			\$4,904,900	\$196,190	\$8,828,700	\$1.73		250113534	4 563511		2045650		2609161		4.29E+14		80.06129		34.11567		114.177		654.7737		3213.867		3868.641	1
				-				* Includes 20% I	Engineering & J	Administration p	olus 35% conting	jency																					

Table D	Table D9(c) - Enhanced Treatment Strategy Costs & Loading Results By: Date:																																
		No Treatment R	ase Case	Alternative Stra	ategy - Enhance	d End.of.Pine 1	reatment				Revised:	10-Apr-10	Raw Data	a for alterna	tive from \	MMA ISIN	sorted by	Catchment	. #-														
		no mouthern b	430 0430	, atemative but	itegy childree	a cha or ripe i	reatment				nonsea.	10740110	num but		tive, nom i	1100 1111	, 501100 03	outerinteri			Fecal												
																					Coliform												
														Particulat	Particulat		Filterable		Total	Fecal	Bacteria		Particulat		Filterable		Total		Particulat		Filterable		
			Annual		Annual									e Solids	e Solids		Solids		Solids	Coliform	Concentr		e Copper		Copper		Copper		e Zinc		Zinc		Total Zinc
			Particulate		Particulate								Runoff	Yield for	Concentr	Filterable	Concentr	Total	Concentr	Bacteria	ation	Particulat	Concentr	Filterable	Concentr	Total	Concentr	Particulat	Concentr	Filterable	Concentr		Concentr
	Catchment	Annual Runoff	Solids (TSS)	Annual Runoff	Solids (TSS)	Removal	Treatment		Annual O&M	Total Cost	\$ per Kg TSS		Volume	Alternativ	ation	Solids	ation	Solids	ation	Yield	(#/100	e Copper	ation	Copper	ation	Copper	ation	e Zinc	ation	Zinc Yield	ation	Total Zinc	ation
	Area	Volume	Yield	Volume	Yield	Efficiency	Design Flow	Capital Cost*	Cost	over 20 Years	Removed		(cf)	e (lbs)	(mg/L)	Yield (lbs)	(mg/L)	Yield (lbs)	(mg/L)	(count)	ml)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	Yield (Ibs)	(ug/L)	(lbs)	(ug/L)	Yield (lbs)	; (ug/L)
	(0)	(2)	(1/-)	(21)	(1/-)		0.4->	(#)	6.0%	(e)																							
1	(na) 14 461	(113)	(Kg) 17.070	(113)	(Kg) 1 709	00.0%	(L/S) 122	(\$) (\$)	(\$/yi) 0 \$20.240	(5)	\$2.41		507100	0 2745 240	11 00240	E1120 EE	141 5704	E 400E 01	172 4721	0.045.12	4015 040	0 470120	1 51007	0.400520	2 210504	1 177447	2 701644	4 20214	12 54400	40.02117	154 0443	E2 22422	2 140 5111
2	21.651	202.469	22.060	303 469	2 207	90.0%	122	\$1,006,20	0 \$50,200	\$2,212,600	\$3.01		1071647	0 7200 522	10.90754	102625.5	152 /692	100016	224 0425	1.00E+12	6190 549	0.470130	1 272624	1 512522	2.210394	2 /21/12	3.721304	9 270562	12 52000	119 6047	177 264	126 09/2	2 190 905
3	20.603	171.661	24 806	171 661	2 481	90.0%	479	\$1,000,20	0 \$65.480	\$2,213,000	\$5.38		606192	0 5468 757	14 45106	63065.06	166 7224	68533.82	270 3042	1.07E+13	6332 848	0.869961	2 299878	0.835373	2.203333	1 705334	4 508319	5 705639	15.08376	56 29726	148 8307	62 0029	3 163 9145
4	11 081	93,971	16.669	93,971	1.667	90.0%	120	\$499.70	0 \$29,980	\$1,099,300	\$3.66		331844	6 3674 895	17 73909	34663.57	167 3994	38338.47	249 0901	5.95E+12	6340 891	0.728319	3 51724	0.455592	2 200174	1 183911	5 717414	3 395242	16.39651	30 2742	146 202	33 66944	4 162 5985
5	8.057	72,728	8.530	72.728	853	90.0%	120	\$499.70	0 \$29,980	\$1.099.300	\$7.16		256828	7 1880.457	11.72846	26001.57	162.2451	27882.03	232.3685	4.48E+12	6167.395	0.237768	1.483628	0.351826	2.195328	0.589594	3.678956	2.183943	13.6274	25.03429	156.2094	27.21823	3 169.8368
6	26.504	459.024	23.889	459.024	2.389	90.0%	164	\$596.20	0 \$35.770	\$1.311.600	\$3.05		1620970	0 5266.617	5.204489	135983.1	134,4391	141249.7	176.8209	2.36E+13	5138.51	0.608064	0.60116	2.170794	2.146145	2.778858	2.747305	6.090451	6.021297	242.1208	239.3716	248.2113	3 245.3929
7	30.899	538,918	35,771	538,918	3,577	90.0%	186	\$640,10	0 \$38,410	\$1,408,300	\$2.19		1903103	0 7886.184	6.637825	168658.8	142.0241	176545	195.4365	2.85E+13	5293.149	0.94237	0.79355	2.536684	2.136089	3.479054	2.929639	9.079433	7.645605	259.7046	218.6919	268.784	1 226.3375
8	6.722	123,347	7,923	123,347	792	90.0%	95	\$437,80	0 \$26,270	\$963,200	\$6.75		435581	1 1746.789	6.42381	30659.69	112.8013	32406.48	159.9421	7.15E+12	5803.137	0.249538	0.918087	0.643914	2.36905	0.893452	3.287137	1.876313	6.903218	66.09533	243.174	67.97164	1 250.0772
9	55.779	1,230,807	56,846	1,230,807	5,685	90.0%	1,173	\$1,812,90	0 \$108,770	\$3,988,300	\$3.90		4346396	0 12532.41	4.618772	321198.5	118.4294	333730.9	153.9062	7.63E+13	6205.191	1.826896	0.673597	5.857832	2.159847	7.684728	2.833444	18.34764	6.764976	623.0416	229.7223	641.3892	236.4873
10	8.401	191,254	8,478	191,254	848	90.0%	147	\$560,40	0 \$33,620	\$1,232,800	\$8.08		675383	9 1869.061	4.432963	51898.84	123.1466	53767.9	157.8231	1.25E+13	6519.258	0.285295	0.676955	0.861528	2.044251	1.146824	2.721206	3.036223	7.204411	88.15142	209.1674	91.18764	216.3718
11	18.082	394,762	20,328	394,762	2,033	90.0%	662	\$1,312,00	0 \$78,720	\$2,886,400	\$7.89		1394038	0 4481.562	5.149631	93721.7	107.741	98203.26	146.5612	2.53E+13	6424.345	0.826843	0.950526	1.84101	2.116397	2.667853	3.066923	4.712867	5.417839	173.2781	199.1978	177.991	204.6156
12	63.311	1,161,893	71,276	1,161,893	7,128	90.0%	492	\$1,109,40	0 \$66,560	\$2,440,600	\$1.90		4103035	0 15713.8	6.134755	301930.9	117.9282	317644.7	164.9159	7.32E+13	6303.379	2.651783	1.035734	5.425697	2.11917	8.07748	3.154904	16.46866	6.432332	500.4846	195.4793	516.9533	201.9116
13	4.658	106,519	5,125	106,519	512	90.0%	83	\$405,70	0 \$24,340	\$892,500	\$9.67		376153	2 1129.782	4.811175	26383.93	112.4062	27513.71	146.7281	7.61E+12	7150.855	0.231977	0.988315	0.452143	1.926313	0.68412	2.914628	1.289028	5.49178	37.90294	161.4818	39.19197	166.9736
14	13.634	238,414	15,/5/	238,425	1,576	90.0%	209	\$683,70	0 \$41,020	\$1,504,100	\$5.30		841960	0 4/3./98	6.609281	62551.44	119.0586	0 00025.24	168.4306	1.30E+13	5466.52	0.424806	0.808601	1.285313	2.446429	1./10119	3.25503	3.965///	7.548701	139.5985	265.7078	143.5643	2/3.2565
15	24.949	352,885	28,251	352,885	2,825	90.0%	328	\$882,10	0 \$52,930	\$1,940,700	\$3.82		1246156	0 6228.271	8.006011	70005.05	130.0002	10/316./	191.8375	2.00E+13	5662.889	0.747096	0.96077	1.887091	2.42681	2.634187	3.38/58	/.3190/3	9.41237	191.2623	245.9644	198.5814	255.3768
10	23.707	218,/39	24,514	218,739	2,401	90.0%	934	\$1,593,90	0 \$90,030	\$3,506,500	1 \$7.95 t \$1.20		1270759	2 5404.423	12 00201	141254.0	145 2500	151402.0	214.0123	1.42E+13	0480.300 4005 001	1 200740	1.014310	1.029503	2.130000	2 175507	3.000321	0.014800	12.4/885	124 2050	143.373	146 1000	100.8019
10	44.717	200, 170	40,097	300,170	4,090	90.0%	120	6570 E0	0 \$27,700	\$1,077,000	1 \$1.30 \$1.07		2151742	0 1/1559.01	7 205140	267447.0	121 004	2721093.0	103.4043	2.41E+13 E 47E.12	4125.047	1.200740	1.47/332	1.074047	2.210202	4 240244	2 227000	14 00100	0 504001	134.2039	200.2044	140.1009	2 214 0005
10	472.950	7 092,507	511 209	7 092 694	51 122	90.0%	150	\$14 714 70	0 \$34,770	\$1,274,900	\$1.07		2.5E+0	0 14000.49	7.393109	237047.0	131.000	2159252	192.0000	3.47E+13 A 20E+14	0133.907	1.9/4039	1.004150	4.373403	2.223/43	50 12702	3.227077	10.90100	0.374071	2212 967	200.3004	420.0703	210.7003
	472.030	7,002,073	511,200	7,002,004	51,122			314,714,70	0 002,000	\$32,371,700	φ3.3z		2.5640	0 112/02.2				2130332		4.276+14				34.11307		50.12772				3213.007		3344.022	
	* Includes 20% Engineering & Administration plus 35% contingency											gency																					

Table D9(d) - Biofiltration Treatment Strategy (Entire City) Costs & Loading Results	
--	--

By: jmr Date: 07-Dec-09

											Date:	07-Dec-09																					
		No Treatment B	lase Case	Alternative Stra	itegy - "Fully Gr	reen"/Biofiltrati	on for Entire Ci	ity			Revised:	10-Apr-10	Raw Data	for alternat	tive, from	WinSLAMN	1, sorted by	Catchment	#:														
								-													Fecal												
																					Coliform												
														Particulat	Particula	t	Filterable		Total	Fecal	Bacteria		Particulat		Filterable		Total		Particulat	F	ilterable		
			Annual		Annual		Total Volume							e Solids	e Solids		Solids		Solids	Coliform	Concentr		e Copper		Copper		Copper		e Zinc		Zinc		Total Zinc
			Particulate		Particulate		of						Runoff	Yield for	Concentr	r Filterable	Concentr	Total	Concentr	Bacteria	ation	Particulat	Concentr	Filterable	Concentr	Total	Concentr	Particulat	Concentr	Filterable (Concentr		Concentr
	Catchment	Annual Runoff	Solids (TSS)	Annual Runoff	Solids (TSS)	Removal	Biofiltration		Annual O&M	Total Cost	\$ per Kg TSS		Volume	Alternativ	ation	Solids	ation	Solids	ation	Yield	(#/100	e Copper	ation	Copper	ation	Copper	ation	e Zinc	ation	Zinc Yield	ation	Total Zinc	ation
	Area	Volume	Yield	Volume	Yield	Efficiency	Systems	Capital Cost*	Cost	over 20 Years	Removed		(cf)	e (lbs)	(mg/L)	Yield (lbs	(mg/L)	Yield (lbs)	(mg/L)	(count)	ml)	Yield (lbs)	(ug/L)	Yield (lbs)	(uq/L)	Yield (lbs)	(uq/L)	Yield (lbs)	(uq/L)	(lbs)	(ug/L) '	/ield (lbs)	(ug/L)
									7.0%																								
	(ha)	(m3)	(Kg)	(m3)	(Kg)		(m3)	(\$)	(\$/yr)	(\$)																							
	16.451	143,606	17,079	2,137	255	98.5%	4,940	\$10,004,100	\$700,290	\$24,009,900	\$71.36		75481	561.7271	119.209	2 4516.45	958.9063	5078.182	1078.169	5.67E+11	26548.4	0.053337	11.32419	0.054999	11.67703	0.108336	23.00123	0.702026	149.0499	4.003054	849.9042	4.70508	998.9542
2	31.651	303,468	33,069	4,177	482	98.5%	9,500	\$19,113,300	\$1,337,930	\$45,871,900	\$70.38		147504	1062.346	115.367	3 8828.094	959.1315	9890.439	1074.55	1.14E+12	27266.19	0.100425	10.9107	0.109991	11.95005	0.210416	22.86075	1.336877	145.2456	8.284388	900.0604	9.621265	1045.306
3	20.603	171,661	24,806	2,495	325	98.7%	6,180	\$12,487,300	\$874,110	\$29,969,500	\$61.21		88119	717.4993	130.428	8 5661.84	1029.685	6379.348	1160.172	6.92E+11	27748.56	0.079291	14.42023	0.067977	12.36257	0.147269	26.7828	0.862486	156.855	4.891408	889.5699	5.753894	1046.425
1	11.081	93,971	16,669	1,449	210	98.7%	3,320	\$6,750,200	\$472,510	\$16,200,400	\$49.21		51179	462.8459	144.864	4 3102.50	971.4767	3565.353	1116.406	3.75E+11	25896	0.061806	19.35316	0.036767	11.51272	0.098573	30.86587	0.523479	163.9152	2.598607	813.6923	3.122087	977.6075
5	8.057	72,728	8,530	1,138	136	98.4%	2,420	\$4,935,900	\$345,510	\$11,846,100	\$70.56		40191	300.7901	119.881	4 2276.503	907.7174	2577.293	1027.652	2.75E+11	24194	0.028472	11.35257	0.027015	10.7718	0.055487	22.12436	0.382457	152.4983	1.94669	776.2101	2.329147	928.7084
5	26.504	459,024	23,889	6,483	470	98.0%	7,950	\$16,023,300	\$1,121,630	\$38,455,900	\$82.10		228935	5 1035.132	72.4278	6 12896.76	902.7857	13931.89	975.2459	2.03E+12	31255.95	0.094255	6.597929	0.178787	12.51526	0.273042	19.11319	1.298256	90.8792	17.65008	1235.523	18.94833	1326.402
7	30.899	538,918	35,771	7,758	716	98.0%	9,270	\$18,655,100	\$1,305,860	\$44,772,300	\$63.86		273973	3 1578.918	92.3150	6 16754.22	980.0123	18333.14	1072.369	2.39E+12	30867.77	0.145828	8.529987	0.213659	12.49764	0.359487	21.02763	1.980806	115.8642	18.80105	1099.738	20.78185	1215.602
3	6.722	123,347	7,923	2,119	171	97.8%	2,020	\$4,127,500	\$288,930	\$9,906,100	\$63.89		74837	376.0251	80.4857	7 3191.51	683.4282	3567.536	763.9499	5.91E+11	27922.83	0.039782	8.51895	0.052099	11.1564	0.091881	19.67535	0.454779	97.38603	4.677778	1001.696	5.132557	1099.083
,	55.779	1,230,807	56,846	21,402	1,198	97.9%	16,730	\$33,469,600	\$2,342,870	\$80,327,000	\$72.17		755761	2640.197	55.9593	6 48641.9	0 1031.435	51282.18	1087.42	1.11E+13	51923.11	0.293768	6.229238	0.802165	17.00961	1.095933	23.23885	3.856435	81.77427	78.26622	1659.606	82.12266	1741.381
0	8.401	191,254	8,478	4,214	209	97.5%	2,520	\$5,137,800	\$359,650	\$12,330,800	\$74.56		148813	8 459.8503	49.4991	5 7667.192	825.68	8 8127.042	875.2012	1.81E+12	42972.08	0.05491	5.91329	0.118181	12.72689	0.173091	18.64018	0.735795	79.23773	11.09588	1194.916	11.83168	1274.153
1	18.082	394,762	20,328	8,285	441	97.8%	5,420	\$10,966,000	\$767,620	\$26,318,400	\$66.17		292567	972.2386	53.2315	4 14603.5	799.9219	15575.75	853.1772	3.68E+12	44472.19	0.136942	7.501135	0.256268	14.03731	0.39321	21.53845	1.148903	62.93232	22.15117	1213.353	23.30008	1276.285
2	63.311	1,161,893	71,276	17,532	1,227	98.3%	18,990	\$37,942,700	\$2,655,990	\$91,062,500	\$65.00		619104	2705.218	69.9938	1 29669.5	768.0035	32374.81	838.0286	6.08E+12	34722.21	0.328679	8.507913	0.449915	11.64614	0.778594	20.15405	3.263882	84.48627	37.12815	961.0699	40.39204	1045.556
3	4.658	106,519	5,125	2,837	121	97.6%	1,400	\$2,871,100	\$200,980	\$6,890,700	\$68.85		100178	3 266.9492	42.6853	4 4886.04	781.6303	5152.989	824.3347	1.34E+12	47427.7	0.044688	7.148767	0.077698	12.42957	0.122386	19.57833	0.349187	55.86015	6.098433	975.5794	6.44762	1031.44
4	13.634	238,414	15,757	3,706	333	97.9%	4,090	\$8,298,400	\$580,890	\$19,916,200	\$64.56		130885	5 733.512	89.7712	8 6662.452	815.7526	7395.964	905.564	1.09E+12	29350.51	0.068957	8.44306	0.104694	12.81881	0.173651	21.26187	0.915966	112.1512	9.876175	1209.242	10.79214	1321.393
5	24.949	352,885	28,251	4,959	515	98.2%	7,480	\$15,085,200	\$1,055,960	\$36,204,400	\$65.27		175118	3 1134.604	103.785	3 7746.62	3 708.9221	8881.231	812.7538	1.06E+12	21332.09	0.104321	9.546803	0.105199	9.627145	0.20952	19.17395	1.442963	132.0508	8.927542	816.9919	10.3705	949.0427
6	23.707	218,739	24,514	3,185	357	98.5%	7,110	\$14,346,300	\$1,004,240	\$34,431,100	\$71.27		112482	2 787.2401	112.110	1 6444.80	918.2092	2 7232.046	1030.369	8.64E+11	27146.03	0.077838	11.08986	0.079188	11.28208	0.157026	22.37194	0.973455	138.6909	5.650048	804.9779	6.623504	943.6688
7	44.719	388,170	46,897	887	108	99.8%	13,420	\$26,906,900	\$1,883,480	\$64,576,500	\$69.01		31331	238.8472	122.116	2 12574.3	2 6431.788	12813.17	6553.959	1.52E+12	170927	0.022332	11.42281	0.148325	75.8684	0.170657	87.29121	0.299678	153.2857	10.68071	5463.205	10.98039	5616.491
8	63.642	892,507	66,000	11,781	1,047	98.4%	19,090	\$38,140,500	\$2,669,840	\$91,537,300	\$70.46		416023	3 2308.533	88.8873	8 18756.73	3 722.5292	21065.26	811.4564	2.92E+12	24835.43	0.23081	8.891049	0.250059	9.63255	0.480869	18.5236	2.949639	113.6232	20.44563	787.5876	23.39527	901.2108
	472.850	7,082,673	511,208	106,544	8,321		141,850	\$285,261,200	\$19,968,290	\$684,627,000	\$68.07		3762481	18342.47				233223.6		3.95E+13				3.132986		5.099426				273.173		296.6501	

By:	jmr	
Date:	07-Dec-09	

										Date:	07-Dec-09																						
		No Treatment	Base Case	Alternative Stra	tegy - "Half Gr	een"/Biofiltrati	on for 50% of C	ity			Revised:	10-Apr-10	Raw Dat	a for alterna	ative, from	WinSLAMM	, sorted by	Catchment	t#:														
																					Fecal												
																					Coliform												
														Particulat	t Particula	t	Filterable		Total	Fecal	Bacteria		Particulat		Filterable		Total		Particulat		Filterable		
			Annual		Annual		Total Volume							e Solids	e Solids		Solids		Solids	Coliform	Concentr		e Copper		Copper		Copper		e Zinc		Zinc		Total Zinc
			Particulate		Particulate		of						Runoff	Yield for	Concentr	r Filterable	Concentr	Total	Concentr	Bacteria	ation	Particulat	Concentr	Filterable	Concentr	Total	Concentr	Particulat	Concentr	Filterable	Concentr		Concentr
	Catchment	Annual Runoff	Solids (TSS)	Annual Runoff	Solids (TSS)	Removal	Biofiltration		Annual O&M	Total Cost	\$ per Kg TSS		Volume	Alternativ	v ation	Solids	ation	Solids	ation	Yield	(#/100	e Copper	ation	Copper	ation	Copper	ation	e Zinc	ation	Zinc Yield	ation	Total Zinc	ation
	Area	Volume	Yield	Volume	Yield	Efficiency	Systems	Capital Cost*	Cost	over 20 Years	Removed		(cf)	e (lbs)	(ma/L)	Yield (lbs)	(ma/L)	Yield (lbs)	(ma/L)	(count)	ml)	Yield (lbs)	(ua/L)	Yield (lbs)	(ua/L)	Yield (lbs)	(ua/L)	Yield (lbs)	(ua/L)	(lbs)	(ua/L)	Yield (lbs)	(ua/L)
						,			7.0%																								
	(ha)	(m3)	(Kg)	(m3)	(Kg)		(m3)	(\$)	(\$/yr)	(\$)																							
1	16.451	143,606	17,079	72,927	8,674	49.2%	2,470	\$5,036,800	\$352,580	\$12,088,400	\$71.91		257530	1 19122.22	2 118.94	1 51130.55	318.1763	70252.89	437.1712	9.06E+12	12436.06	2.418735	15.05136	0.699529	4.353046	3.118265	19.40441	21.83496	135.8751	49.03117	305.1122	70.86612	440.9872
2	31.651	303,468	33,069	153,980	16,794	49.2%	4,750	\$9,623,100	\$673,620	\$23,095,500	\$70.95		543754	8 37023.87	7 109.068	6 102625.5	302.4597	139649.4	411.5772	1.87E+13	12180.8	4.643453	13.68527	1.513522	4.46068	6.156974	18.14595	42.61664	125.6005	118.6047	349.554	161.2214	475.1548
3	20.603	171,661	24,806	87,158	12,576	49.3%	3,090	\$6,287,100	\$440,100	\$15,089,100	\$61.69		307784	1 27725.51	1 144.296	1 63065.06	328.3659	90790.56	472.7264	1.09E+13	12472.77	4.391988	22.86811	0.835373	4.349604	5.227362	27.21772	28.98706	150.9292	56.29726	293.1274	85.28435	444.0568
4	11.081	93,971	16,669	47,739	8,444	49.3%	1,660	\$3,398,600	\$237,900	\$8,156,600	\$49.58		168581	4 18614.96	6 176.877	9 34663.57	329.518	53278.51	506.4749	5.95E+12	12481.75	3.673705	34.92289	0.455592	4.33094	4.129296	39.25381	17.2482	163.9644	30.2742	287.7919	47.52242	451.7565
5	8.057	72.728	8.530	36,949	4,335	49.2%	1.210	\$2,485,100	\$173.960	\$5,964,300	\$71.09		130481	1 9556.957	7 117.325	8 26001.57	319.3505	35558.5	436.7284	4.48E+12	12139.42	1.20348	14,78111	0.351826	4.321111	1.555306	19.10221	11.11638	136.531	25.03429	307.4704	36.15063	444.0009
6	26.504	459.024	23,889	232,910	12,189	49.0%	3,980	\$8,077,400	\$565.420	\$19,385,800	\$82.85		822485	4 26873 27	7 52 3375	7 135983 1	264 955	162856.1	317 3155	2.36F+13	10127.07	3 089581	6.019866	2 170794	4 229663	5 260374	10 24953	31 12949	60.65396	242 1208	471 758	273 2503	532 4122
7	30.899	538 918	35,771	273 543	18,261	49.0%	4.630	\$9,382,400	\$656,770	\$22,517,800	\$64.30		965973	9 40257 75	5 66 7583	1 168658.8	279 8073	208916.6	346 5956	2.85E+13	10428.24	4 788351	7 943941	2 536684	4 208394	7 325035	12 15233	46 43394	77.03456	259 7046	430 8535	306 1382	507 8876
8	6.722	123.347	7,923	62,759	4.049	48.9%	1.010	\$2,078,100	\$145.470	\$4,987,500	\$64.37		221624	6 8925 767	7 64 51 32	3 30659.69	221 6998	39585 51	286 2422	7.15E+12	11405.49	1 268021	9 169044	0.643914	4 656132	1 911936	13.82518	9.613431	69 51457	66 09533	477 9343	75 70862	547 4479
9	55 779	1,230,807	56.846	626,970	29.062	48.9%	8.370	\$16,861,100	\$1,180,280	\$40,466,700	\$72.82		2214044	0 64070 34	4 46 3545	2 321198.5	232 4892	385269.2	278 8647	7.63E+13	12181 43	9 29218	6 725845	5 857832	4 240003	15 15003	10 96586	93 79873	67 89319	623 0416	450 9686	716 8395	518 8611
10	8 401	191,254	8.478	97.806	4.346	48.7%	1.260	\$2,586,800	\$181.080	\$6,208,400	\$75.13		345385	8 9581 359	9 44 4369	1 51898.84	240 8067	61480.21	285 2635	1.25E+13	12748.07	1 454733	6 749854	0.861528	3 997426	2 316261	10 74728	15 55956	72 19519	88 15142	409.016	103 711	481 2111
11	18 082	394,762	20.328	201.724	10.393	48.9%	2,710	\$5.521.100	\$386,480	\$13,250,700	\$66.69		712356	0 22913 36	6 51 524	4 937217	210 8426	116635	262 3899	2.53E+13	12572.06	4 205779	9 461603	1.84101	4 141662	6.046785	13 60326	24 16109	54.35441	173 2781	389 8182	197 4392	444 1726
12	63.311	1.161.893	71,276	590.364	36,293	49.1%	9.500	\$19,113,300	\$1,337,930	\$45,871,900	\$65.56		2084773	0 80012.55	5 61 4781	2 301930.9	232 0941	381943.5	293 5998	7.32E+13	12405.66	13 43499	10 32747	5 425697	4 170732	18 86069	14 49821	84 08318	64 6347	500 4846	384 7223	584 5666	449 3561
13	4 658	106.519	5.125	54,711	2.624	48.8%	700	\$1,445,600	\$101,190	\$3,469,400	\$69.36		193201	5 5785 039	9 47 9641	8 26383 93	218 8489	32168 94	266 8343	7.61E+12	13922.34	1 182733	9.810512	0.452143	3 75043	1 634876	13 56094	6 623173	54 93777	37 90294	314 3966	44 52612	369 3344
14	13.634	238.414	15,757	121.134	8.050	48.9%	2.050	\$4,188,200	\$293,170	\$10.051.600	\$65.21		427763	8 17747.38	8 66 4586	4 62551 44	234 3412	80298 87	300 8297	1.30F+13	10759 67	2 159674	8 09095	1 285313	4 815267	3 444986	12 90621	20.30219	76.05965	139 5985	522 9885	159 9005	599 0474
15	24 949	352.885	28,251	179.025	14,393	49.1%	3,740	\$7,595,100	\$531,660	\$18,228,300	\$65.77		632199	5 31732 33	3 80 4024	1 101088.4	256 2491	132820.7	336 6876	2.00F+13	11162.37	3 789816	9.606814	1 887091	4 783591	5.67691	14.39042	37 34696	94 6709	191 2623	484 8312	228 6089	579 5013
16	23 707	218 739	24.514	111.062	12.447	49.2%	3,560	\$7,233,100	\$506.320	\$17,359,500	\$71.93		392198	2 27440 44	4 112 074	5 75085 95	306 8093	102526.5	418 9343	1.42E+13	12775	3 690894	15.08139	1 029563	4 206904	4 72046	19 28831	30 59156	125 0004	69 10635	282 376	99 69786	407 3762
17	44 719	388 170	46 897	194 716	23 525	49.8%	6 710	\$13 547 000	\$948.290	\$32 512 800	\$69.56		687609	7 51865 1	1 120 824	3 141354.8	329 4457	193219.8	450 3241	2.41F+13	12410.05	6 419638	14 9618	1 894849	4 416192	8 314484	19 37799	59 68832	139 1114	134 2059	312 7845	193 8943	451 8959
19	63.642	992 507	66,000	452 597	22,562	40.1%	9 550	\$10 212 000	\$1.244.000	\$46 110 900	\$71.09		1509224	0 72002 53	2 74 1607	1 257647.9	259 2454	221641.5	222 5205	5.47E+12	12100.2	0.009394	10.02546	4 373405	4 295249	14 27170	14 4107	96.00510	96 22922	400 6734	410 7927	405 7691	407 1105
10	472.950	7 092 673	511 209	3 599 064	260.019	47.170	70.950	\$1/3 672 900	\$10.057.120	\$244.915.200	\$69.64		1.27E+0	0 5732417	7	207017.0	200.0101	2619902	002.0070	4 20E+14	12100.2	7.770001	10.02010	24 11567	1.0002.10	115 2219	14.4107	00.07017	00.02002	2212 967	110.7027	2001 004	177.1100
	112.030	,,302,073	511,200	3,370,004	200,010		10,750	÷1-10,012,000		\$511,010,200	300.04		1.27640					2070072		1.2.7 LT 14				54.11507		110.2210				5213.007		5557.074	
								* Includes 209	6 Engineering & 7	Administration p	olus 35% conting	gency																					

Table D9(f) - Biofiltration Treatment Strategy (Streets ≤6% only) Costs & Loading Resu	lts

3 4 5

By: jmr Date: 07-Dec-09

	No Treatment F	aso Caso	Alternative Stra	tom, Biofiltrati	ion for Streets	with Profile Cr	ado -6% (+/, 10.6	km of POMA		Date.	10 Apr. 10	Paw Data fo	r altornativ	o from Wi	MMA 12n	orted by C	atchmont #-															
	NO TEATHER L	1030 0030	Anternative Stra	tegy - biointiati	ion for streets	with rollie or	300 < 0.0 (+/ - 13.0	KIII OI KOW)		Neviseu.	10-Api-10	Kaw Data Io	atternative	c, iroin wi	HISCHIVITY, .	or rearby or	atonnent #.			Fecal												
																				Coliform												
													Particulat	Particulat		Filterable		Total	Fecal	Bacteria		Particulat		Filterable		Total		Particulat		Filterable		
		Annual		Annual		Total Volume							e Solids	e Solids		Solids		Solids	Coliform	Concentr		e Copper		Copper		Copper		e Zinc		Zinc		Total Zinc
		Particulate		Particulate		of							Yield for	Concentr	Filterable	Concentr	Total	Concentr	Bacteria	ation	Particulat	Concentr	Filterable	Concentr	Total	Concentr	Particulat	Concentr	Filterable	Concentr		Concentr
Catchment	Annual Runoff	Solids (TSS)	Annual Runoff	Solids (TSS)	Removal	Biofiltration		Annual O&M	Total Cost	\$ per Kg TSS		Runoff	Alternativ	ation	Solids	ation	Solids	ation	Yield	(#/100	e Copper	ation	Copper	ation	Copper	ation	e Zinc	ation	Zinc Yield	ation	Total Zinc	ation
Area	Volume	Yield	Volume	Yield	Efficiency	Systems	Capital Cost*	Cost	over 20 Years	Removed		Volume (cf)	e (lbs)	(mg/L)	Yield (lbs)	(mg/L)	Yield (lbs)	(mg/L)	(count)	ml)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	(lbs)	(ug/L)	Yield (lbs)	(ug/L)
								7.0%																								
(ha)	(m3)	(Kg)	(m3)	(Kg)		(m3)	(\$)	(\$/yr)	(\$)																							
16.451	143,606	17,079	79,928	13,752	19.5%	380	\$789,500	\$55,270	\$1,894,900	\$28.48		2822545	30317.88	172.0597	37343.53	212.0264	67661.43	384.1631	4.12E+12	5163.484	2.624044	14.89861	0.475558	2.700089	3.099606	17.59872	38.75228	220.0249	39.55935	224.6072	78.31165	444.6322
31.651	303,468	33,069	181,127	26,713	19.2%	750	\$1,547,700	\$108,340	\$3,714,500	\$29.22		6396195	58891.64	147.4868	76138.88	190.7656	135030.9	338.3193	9.26E+12	5113.63	5.049568	12.65167	1.083234	2.71404	6.132803	15.36572	75.83063	189.9933	100.4063	251.5677	176.2373	441.5618
20.603	171,661	24,806	101,759	18,579	25.1%	360	\$748,400	\$52,390	\$1,796,200	\$14.42		3593445	40960.39	182.5889	47931.62	213.7601	88892.08	396.4309	5.44E+12	5352.556	4.238591	18.90279	0.589525	2.629096	4.828127	21.53194	50.20928	223.9177	45.89924	204.6963	96.10863	428.6145
11.081	93,971	16,669	62,859	11,956	28.3%	140	\$293,800	\$20,570	\$705,200	\$7.48		2219774	26357.63	190.2037	27926.73	201.6168	54284.33	391.9054	3.54E+12	5637.182	3.727422	26.9101	0.346155	2.499063	4.073582	29.4092	29.17959	210.6619	25.64647	185.1546	54.82619	395.8174
8.057	72,728	8,530	67,117	8,113	4.9%	20	\$42,800	\$3,000	\$102,800	\$12.33		2370113	17885.15	120.8773	24787.39	167.6012	42672.53	288.5325	4.05E+12	6035.024	2.128489	14.39189	0.332096	2.245482	2.460583	16.63736	21.26699	143.7978	24.19936	163.6252	45.46631	307.4228
26.504	459,024	23,889	416,216	21,498	10.0%	200	\$418,200	\$29,270	\$1,003,600	\$20.99		14698000	47395.38	51.6534	126715	138.1609	174110.2	189.8371	2.03E+13	4868.853	4.559731	4.971601	2.020227	2.20271	6.579952	7.174305	57.83498	63.05909	235.7531	257.0482	293.5883	320.1076
30.899	538,918	35,771	475,249	32,027	10.5%	260	\$542,300	\$37,960	\$1,301,500	\$17.38		16/82650	70607.25	67.39223	154876.3	147.8903	225483.2	215.3123	2.36E+13	4962.859	7.071526	6.752552	2.312773	2.208452	9.384258	8.960964	85.91875	82.04322	250.2333	238.9461	336.152	320.9893
6./22	123,347	7,923	95,409	0,300	19.7%	130	\$2/3,000	\$19,110	\$655,200	\$21.04		3369230	14034.71	66./258/	24609.9	101 5410	38644.64	183.8121	4.99E+12	5229.156	1.504475	7.155991	0.545639	2.595315	2.050114	9.751308	171 15 47	79.73843	61.9396	294.6139	78.70381	3/4.3524
00.//9	1,230,807	0,840	1,000,591	47,342	10.7%	140	\$1,445,600	\$101,190	\$3,409,400	\$18.25		3/004920	14909.00	44.38815	280008.9	121.0419	40117 50	170.094	0.30E+13	5900.020	1 750140	07/122	0.752010	2.240/1	17.00019	7.409300	1/1.104/	70 45 42 4	02 54041	204.0907	109.7004	327.5192
10.401	204 74 2	0,470	271 477	10,730	20.3%	140	\$293,000	\$20,370	\$705,200	\$20.30		12110110	14070.07	42.13007	40217.47	100 2242	120500.7	150 2020	1.01E+13	4240 444	7.014027	9.7/4133	1 750114	2.130434	2.011100	10.04446	20.10440 44.400EE	F 4 E0022	140 0147	230.4144	214 5072	310.0000
62 211	1 161 902	71 276	909 404	54 950	22.0%	1.090	\$2,220,600	\$155.440	\$5 320 400	\$16.22		21729950	1211/15 /	61 16090	24/0/2 1	122 7161	366099.0	19/ 00//6	5 29E+12	5970 21	16 1022	0.013410	/ /00712	2.147007	20.60202	10.70443	1/3 7003	72 62574	/61 2050	207.4327	605.0944	202.0312
4 658	106 519	5 125	79.605	3 5 2 3	31.3%	110	\$231 400	\$16,200	\$555.400	\$17.33		2811118	7765 847	44 25181	20556.46	117 1885	28322 32	161 4601	5.52F+12	6944 298	1 316364	7 504337	0 357478	2 037913	1 673841	9 542245	10 79709	61 55215	33 89972	193 2558	44 69671	254 8074
13 634	238.414	15,757	204.521	13,824	12.3%	150	\$314,600	\$22,020	\$755.000	\$19.53		7222326	30476.08	67 59324	55210.62	122 507	85686 91	190 1309	1.04E+13	5086 102	3 024999	6 71218	1.16606	2 587373	4 191063	9 299562	37 16235	82 45966	134,555	298 5645	171 7173	381 0241
24,949	352.885	28.251	312.582	25.722	9.0%	150	\$314.600	\$22.020	\$755.000	\$14.93		11038310	56708.45	82.29363	92362.91	134.0943	149071.2	216.4245	1.68E+13	5392.52	5.906794	8.575601	1.745341	2.533921	7.652142	11.10953	69.84246	101.3987	185.2668	268.9741	255.1089	370.3722
23.707	218,739	24,514	158,649	20,895	14.8%	240	\$501,000	\$35,070	\$1,202,400	\$16.61		5602420	46064.73	131.7086	62077.32	177.5713	108141.9	309.3382	9.52E+12	6004.273	5.038174	14.41162	0.818228	2.34053	5.856404	16.75216	55.40581	158.4875	60.16757	172.1085	115.5734	330.5959
44.719	388,170	46,897	245,316	39,168	16.5%	710	\$1,466,000	\$102,620	\$3,518,400	\$22.76		8662943	86351.22	159.6703	110430.4	204.2861	196781.4	364.0273	1.31E+13	5332.303	7.846652	14.51558	1.392454	2.57591	9.239101	17.09148	109.128	201.8767	112.9555	208.9573	222.0833	410.8336
63.642	892,507	66,000	615,371	51,603	21.8%	1,700	\$3,479,600	\$243,570	\$8,351,000	\$29.00		21730830	113765	83.85974	197662.8	145.7686	311427.6	229.6657	3.32E+13	5406.104	10.39294	7.664392	3.398851	2.506521	13.79177	10.1709	150.9854	111.3458	368.4463	271.7148	519.4318	383.0607
472.850	7,082,673	511,208	5,592,674	421,349		7,300	\$15,091,700	\$1,056,430	\$36,220,300	\$20.15		197496174	928914.5		1723132		2652047		3.14E+14		101.7819		28.87589		130.6578		1196.87		2992.212		4189.08	

* Includes 20% Engineering & Administration plus 35% contingency

Formula: #VALUE!

Table D9(g) - Street Sweeping (2x per year) Costs & Loading Results

Catchment

Area (ha) 16.451

3 4 5

31.651 20.603 11.081 8.057 26.504 30.899 6.722 55.779 8.401 18.082 63.311 4.658 13.634 24.949 23.707 44.719 63.642 472.850

Alternative Strateny - Street Cleaning Twice per Vea

By: Date:

jmr

07-Dec-09	

ſ	No Treatment F) (A	Annual Channel Cla		//					Date.	10 Are 10	Davis Davia 6						
I	No freatment e	sase case	Alternative stra	ategy - Street Cit	eaning, Twice p	er rear					Revised:	10-Apr-10	Raw Data Io	or alternativ	ve, from w	INSLAIVIIVI, S	ion ted by Ci	stonment #	
I																			
I														Particulat	Particulat		Eiltorablo		Total
I		Annual		Annual		Total Length								o Solide	a Solide		Solide		Solida
I		Particulate		Particulate		of ROW							Rupoff	Vield for	Concentr	Filterable	Concentr	Total	Concer
I	Annual Runoff	Solids (TSS)	Annual Runoff	Solids (TSS)	Removal	Cleaned		Anr	nual OM&R	Total Cost	\$ per Ka TSS		Volume	Alternativ	ation	Solids	ation	Solids	ation
I	Volume	Vield	Volume	Vield	Efficiency	Annually	Canital Cost*		Cost**	over 20 Years	Removed		(cf)	e (lhs)	(ma/L)	Vield (lbs)	(ma/l)	Vield (lhs)	(ma/l
I	Foldine	nord	Volume	nord	Emoloney	2	# of Sweeners	Pur	hased.	1	Removed		(01)	0 (100)	((()))	noid (ibb)	((113) L)	11010 (103)	(ing/ c
I	(m3)	(Ka)	(m3)	(Ka)		(Km)	(\$)	/ arc	(\$/vr)	. (\$)									
ı	143.606	17.079	143.606	17.035	0.3%	6.25	\$ 8.300	s	870	\$25,700	\$29.20		5071220	37556 55	118.63	51130.55	161 5784	88687.2	280.26
ì	303.468	33.069	303.468	32,987	0.2%	18.07	\$ 23,900	ŝ	2.510	\$74,100	\$45.18		10716470	72723.37	108,7035	102625.5	153.4683	175348.9	262.22
3	171.661	24.806	171.661	24.698	0.4%	9.01	\$ 11.900	ŝ	1.250	\$36.900	\$17.08		6061920	54450.58	143.8843	63065.06	166.7224	117515.6	310.67
ı	93,971	16.669	93.971	16.561	0.6%	7.85	\$ 10,400	ŝ	1.090	\$32,200	\$14.91		3318446	36511.91	176.2467	34663.57	167.3994	71175.51	343.72
7	72,728	8,530	72,728	8,508	0.3%	5.92	\$ 7,800	\$	820	\$24,200	\$55.00		2568287	18756.6	116.9854	26001.57	162.2451	44758.16	279.28
1	459.024	23.889	459.024	23.850	0.2%	9.9	\$ 13,100	\$	1.370	\$40,500	\$51.92		16209700	52581	51.96072	135983.1	134.4391	188564	186.42
2	538,918	35,771	538,918	35,701	0.2%	12.68	\$ 16,800	\$	1,760	\$52,000	\$37.14		19031030	78707.02	66.24794	168658.8	142.0241	247365.9	208.30
2	123,347	7,923	123,347	7,898	0.3%	4.88	\$ 6,500	\$	680	\$20,100	\$40.20		4355811	17412.82	64.03558	30659.69	112.8013	48072.57	176.86
2	1,230,807	56,846	1,230,807	56,676	0.3%	35.92	\$ 47,500	\$	4,990	\$147,300	\$43.32		43463960	124949.5	46.04965	321198.5	118.4294	446148.4	164.49
I	191,254	8,478	191,254	8,450	0.3%	4.57	\$ 6,000	\$	630	\$18,600	\$33.21		6753839	18629.62	44.18497	51898.84	123.1466	70528.52	167.35
2	394,762	20,328	394,762	20,224	0.5%	16.16	\$ 21,400	\$	2,240	\$66,200	\$31.83		13940380	44585.55	51.23194	93721.7	107.741	138307.2	158.99
I	1,161,893	71,276	1,161,893	70,959	0.4%	43.46	\$ 57,500	\$	6,030	\$178,100	\$28.09		41030350	156439.6	61.0749	301930.9	117.9282	458370.4	179.03
3	106,519	5,125	106,519	5,093	0.6%	6.13	\$ 8,100	\$	850	\$25,100	\$39.22		3761532	11229.17	47.81942	26383.93	112.4062	37613.09	160.24
1	238,414	15,757	238,425	15,724	0.2%	8.47	\$ 11,200	\$	1,180	\$34,800	\$52.73		8419607	34665.32	65.95149	62551.44	119.0586	97216.83	185.03
9	352,885	28,251	352,885	28,192	0.2%	14.56	\$ 19,300	\$	2,020	\$59,700	\$50.59		12461560	62153.77	79.89438	101088.4	130.0002	163242.1	209.93
7	218,739	24,514	218,739	24,441	0.3%	13.72	\$ 18,200	\$	1,900	\$56,200	\$38.49		7724422	53883.28	111.7402	75085.95	155.7787	128969.3	267.5
9	388,170	46,897	388,170	46,783	0.2%	21.28	\$ 28,200	\$	2,950	\$87,200	\$38.25		13707580	103139.6	120.5274	141354.8	165.2589	244494.5	285.84
2	892,507	66,000	892,507	65,813	0.3%	36.23	\$ 47,900	\$	5,030	\$148,500	\$39.71		31517420	145093.2	73.74247	257647.8	131.006	402741.3	204.78
)	7,082,673	511,208	7,082,684	509,593		275.06	\$364,00)	\$38,170	\$1,127,400	\$34.90		250113534	1123468		2045650		3169119	

Costs prorated by catchment based on length of ROW; see copmutation, below. * Includes 5% Administration plus 35% contingency ** Includes replacement purchases of new sweepers; straight-line depreciation

Assumed fraction that can be cleaned:	100%	68763.2 m
Passes per street, curb to curb:	2 #/st	137526.4 m total cleaning length
Operating speed (3-15 km/hr):	10 km/hr	13.75 hrs to clean all streets
Cleaning schedule: 2/year	2 /year or	27.50 hrs/yr
Annual operating time per unit, less	10% down time:	1872 hr
# units to purchase (1 minimum):		1
% utilization of sweepers	c	1.5%
Capital cost (at start):	\$260,000 /unit *1.4	\$364,000 incl 1.4 for admin & contingency
Replacement schedule:	6 years	
Replacement capital cost (over 20 years):	\$520,000 total *1.4	\$728,000 incl 1.4 for admin & contingency
	or	\$36,400 /yr
O&M cost, per CWP:	\$65 /hr	\$1,788 /yr

	e Solids	e Solids		Solids		Solids	Coliform	Concentr		e Copper		Copper		Copper		e Zinc		Zinc		Total Zinc
Runoff	Yield for	Concentr	Filterable	Concentr	Total	Concentr	Bacteria	ation	Particulat	Concentr	Filterable	Concentr	Total	Concentr	Particulat	Concentr	Filterable	Concentr		Concentr
Volume	Alternativ	ation	Solids	ation	Solids	ation	Yield	(#/100	e Copper	ation	Copper	ation	Copper	ation	e Zinc	ation	Zinc Yield	ation	Total Zinc	ation
(cf)	e (lbs)	(mg/L)	Yield (lbs)	(mg/L)	Yield (lbs)	(mg/L)	(count)	ml)	Yield (lbs)	(ug/L)	(lbs)	(ug/L)	Yield (lbs)	(ug/L)						
		-		-		-				-		-		-		-		-		-
5071220	37556.55	118.63	51130.55	161.5784	88687.2	280.2618	9.06E+12	6315.363	4.744954	14.9946	0.699529	2.210594	5.444478	17.20518	42.89432	135.551	49.03117	154.9442	91.9256	290.4955
10716470	72723.37	108.7035	102625.5	153.4683	175348.9	262.2204	1.87E+13	6180.548	9.110682	13.62431	1.513522	2.263353	10.62421	15.88767	83.72578	125.2053	118.6047	177.364	202.3305	302.5694
6061920	54450.58	143.8843	63065.06	166.7224	117515.6	310.6709	1.09E+13	6332.848	8.610723	22.76381	0.835373	2.208441	9.446104	24.97227	56.96537	150.597	56.29726	148.8307	113.2627	299.4279
3318446	36511.91	176.2467	34663.57	167.3994	71175.51	343.7251	5.95E+12	6340.891	7.194304	34.74317	0.455592	2.200174	7.649895	36.94334	33.86142	163.5256	30.2742	146.202	64.1356	309.7275
2568287	18756.6	116.9854	26001.57	162.2451	44758.16	279.2827	4.48E+12	6167.395	2.35969	14.72403	0.351826	2.195328	2.711514	16.91935	21.82101	136.1591	25.03429	156.2094	46.85524	292.3682
16209700	52581	51.96072	135983.1	134.4391	188564	186.4229	2.36E+13	5138.51	6.048716	5.980035	2.170794	2.146145	8.219514	8.126184	60.87183	60.18066	242.1208	239.3716	302.9925	299.5522
19031030	78707.02	66.24794	168658.8	142.0241	247365.9	208.3017	2.85E+13	5293.149	9.365633	7.886608	2.536684	2.136089	11.90232	10.0227	90.73479	76.40591	259.7046	218.6919	350.4391	295.0977
4355811	17412.82	64.03558	30659.69	112.8013	48072.57	176.8657	7.15E+12	5803.137	2.474731	9.104885	0.643914	2.36905	3.118647	11.47394	18.74198	68.95438	66.09533	243.174	84.83716	312.1278
43463960	124949.5	46.04965	321198.5	118.4294	446148.4	164.4998	7.63E+13	6205.191	18.12847	6.684167	5.857832	2.159847	23.98632	8.84402	183.3324	67.59668	623.0416	229.7223	806.3735	297.3188
6753839	18629.62	44.18497	51898.84	123.1466	70528.52	167.3515	1.25E+13	6519.258	2.830083	6.715277	0.861528	2.044251	3.691609	8.759522	30.33881	71.98853	88.15142	209.1674	118.4902	281.156
13940380	44585.55	51.23194	93721.7	107.741	138307.2	158.9958	2.53E+13	6424.345	8.182164	9.406089	1.84101	2.116397	10.02317	11.52248	47.04033	54.07682	173.2781	199.1978	220.3184	253.2746
41030350	156439.6	61.0749	301930.9	117.9282	458370.4	179.0304	7.32E+13	6303.379	26.25592	10.25504	5.425697	2.11917	31.68161	12.37421	164.4185	64.21859	500.4846	195.4793	664.902	259.6975
3761532	11229.17	47.81942	26383.93	112.4062	37613.09	160.2469	7.61E+12	7150.855	2.294028	9.773482	0.452143	1.926313	2.746172	11.6998	12.86392	54.8055	37.90294	161.4818	50.76684	216.2872
8419607	34665.32	65.95149	62551.44	119.0586	97216.83	185.0397	1.30E+13	5466.52	4.220698	8.033557	1.285313	2.446429	5.506004	10.47997	39.63239	75.43517	139.5985	265.7078	179.2306	341.1425
12461560	62153.77	79.89438	101088.4	130.0002	163242.1	209.9302	2.00E+13	5662.889	7.422603	9.54551	1.887091	2.42681	9.309702	11.97233	73.14121	94.06003	191.2623	245.9644	264.4032	340.024
7724422	53883.28	111.7402	75085.95	155.7787	128969.3	267.569	1.42E+13	6486.355	7.23872	15.01797	1.029563	2.136005	8.268285	17.15398	60.0868	124.6604	69.10635	143.373	129.1931	268.0333
13707580	103139.6	120.5274	141354.8	165.2589	244494.5	285.8405	2.41E+13	6225.221	12.71351	14.86347	1.894849	2.215282	14.60837	17.07876	118.8537	138.9528	134.2059	156.9012	253.0596	295.8539
31517420	145093.2	73.74247	257647.8	131.006	402741.3	204.7816	5.47E+13	6135.967	19.59422	9.963061	4.373405	2.223743	23.96762	12.1868	168.8607	85.8605	409.6734	208.3064	578.5336	294.1666
250113534	1123468		2045650		3169119		4 29F+14		158 7898		34 11567		192 9055		1308 185		3213 867		4522.049	

Particulat

Filterable

Total

Particulat

Filterable

Fecal Coliform Fecal Bacteria

Table D9(h) - Street Sweeping (1x per month) Costs & Loading Results

No Treatment Base Case Alternative Strategy - Street Cleaning, Once per Month

By: Date: Revised:

jmr

07-Dec-09	
10-Apr-10	Raw Data for alternative, from WinSLAMM, sorted by Catchment #:

		no neument i		, atternative but	negy successi	sunnig, once p	a worth						normout.	10710110	num butu re	i unternatio	
	Catchment Area	Annual Runoff Volume	Annual Particulate Solids (TSS) Yield	Annual Runoff Volume	Annual Particulate Solids (TSS) Yield	Removal Efficiency	Total Length of ROW Cleaned Annually	Cap	pital Cost*	Anr	nual OM&R Cost**	Total Cost over 20 Years	\$ per Kg TSS Removed		Runoff Volume (cf)	Particulat e Solids Yield for Alternativ e (lbs)	Particulat e Solids Concentr ation (mg/L)
	(1)	(2)	(1/-)	(2)	(1/-)		12	# OI	r Sweepers	Purc	nased:	1 (*)					
	(na)	(m3)	(Kg)	(m3)	(Kg)	1 70/	(KIII)		(\$)		(\$/yr) 1.070	(\$)	¢5.05		5071000	27005 22	11/ 0005
2	10.451	143,000	17,079	143,000	10,785	1.7%	37.52	\$	8,300	÷	1,070	\$29,700	\$5.05		5071220	3/005.23	107 1000
2	31.001	303,408	33,009	303,408	32,518	1.7%	108.43	\$	23,900	÷	3,100	\$85,900	\$7.79		10/164/0	/ 1090.04	140.0004
3	20.003	02.071	24,000	02.071	24,000	2.7/0	47.11	÷	10,400	÷	1,040	\$42,700	\$2.77		2210444	25162.20	140.3274
" c	0.057	73,771	0,009	73,771	0.204	4.3/0	47.11	÷	7 900	÷	1,330	\$37,400	\$2.00		3510440	10404 21	115 2072
5	0.007	12,120	0,000	12,120	0,304	1.770	50.0	ŝ	12,100	ŝ	1,010	\$28,000	\$7.37		2306267	F2007 70	F1 4000
2	20.004	459,024	23,889	459,024	23,031	1.176	59.39	\$	13,100	÷	1,700	\$47,100	\$9.13		10209700	32097.78	01.4832
2	30.899	538,918	35,771	538,918	35,302	1.376	76.09	\$	10,800	÷	2,170	\$60,200	\$0.42		19031030	17100.00	00.00822
8	0.722	123,347	1,923	123,347	7,750	2.176	29.28	\$	0,000	÷	840	\$23,300	\$0.98		4300811	1000.22	02.88597
10	00.//9	1,230,807	0,840	1,230,807	00,711	2.0%	210.03	÷	47,500	ç	0,100	\$170,500	\$7.51		43403900	10202.45	40.20001
11	10.001	204 742	0,470	204 742	0,273	2.2/0	27.41	÷	21 400	÷	2 770	\$21,000	\$3.04 ¢E E1		12040290	10203.40	43.30374
12	42 211	1 141 002	20,320	1 141 902	40 141	3.4%	240.73	÷	21,400	÷	2,770	\$70,000	\$3.31		13740380	432/7./7	47.73133
12	4 4 5 0	1,101,073	/1,2/0 E 10E	1,101,073	4 017	4 10/	200.77	÷	9 100	÷	1,450	\$200,000	\$4.00		41030330	10020 55	44 14001
14	4.030	220 414	16 767	100,519	4,717	4.1/0	50.70	÷	11 200	÷	1,000	\$29,100	\$7.00		9410407	24250 12	40.10021
15	24 040	250,414	29 251	250,425	27.960	1.4%	97.25	ę	10 200	ę	2 /00	\$40,200	\$9.10		12461560	61/21 05	79 05267
16	24.747	219 720	20,231	219 720	27,000	2.0%	07.33	ę	19,300	ę	2,490	\$65,200	\$0.04		7724401000	52060.02	100 9/61
17	44 710	210,737	46 907	210,737	46 129	1.6%	127.60	é	28 200	é	2,550	\$101,200	\$6.67		12707590	101717 4	110 9655
10	44.717	300,170	40,097	903 507	40,130	1.0%	217.07	÷	47.000	÷	4 210	\$101,200	\$0.07		21517420	140764 4	70 66 40
10	473.042	7 092,307	E11 200	7 092,507	E00 442	1.970	1 450 22	ş	\$264,000	Ŷ	¢47 120	\$172,100	\$0.90		260112524	1102204	72.0049
	4/2.000	1,002,013	J11,200	7,002,004	300,442		1,000.00		\$304,000		947,130	φ1,300,000	\$0.07		230113334	1103290	

								Fecal												
								Coliform												
	Particulat	Particulat		Filterable		Total	Fecal	Bacteria		Particulat		Filterable		Total		Particulat		Filterable		
	e Solids	e Solids		Solids		Solids	Coliform	Concentr		e Copper		Copper		Copper		e Zinc		Zinc		Total Zinc
Runoff	Yield for	Concentr	Filterable	Concentr	Total	Concentr	Bacteria	ation	Particulat	Concentr	Filterable	Concentr	Total	Concentr	Particulat	Concentr	Filterable	Concentr		Concentr
Volume	Alternativ	ation	Solids	ation	Solids	ation	Yield	(#/100	e Copper	ation	Copper	ation	Copper	ation	e Zinc	ation	Zinc Yield	ation	Total Zinc	ation
(cf)	e (lbs)	(mg/L)	Yield (lbs)	(mg/L)	Yield (lbs)	(mg/L)	(count)	ml)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	(lbs)	(ug/L)	Yield (lbs)	(ug/L)
5071220	37005.23	116.8885	51130.55	161.5784	88135.84	278.5195	9.06E+12	6315.363	4.538204	14.34125	0.699529	2.210594	5.237736	16.55185	42.68261	134.882	49.03117	154.9442	91.71384	289.8264
10716470	71690.64	107.1598	102625.5	153.4683	174316.2	260.6761	1.87E+13	6180.548	8.723415	13.04518	1.513522	2.263353	10.23694	15.30854	83.32925	124.6124	118.6047	177.364	201.9341	301.9765
6061920	53105.26	140.3294	63065.06	166.7224	116170.3	307.1145	1.09E+13	6332.848	8.106232	21.4301	0.835373	2.208441	8.941614	23.63857	56.4488	149.2313	56.29726	148.8307	112.7461	298.062
3318446	35166.57	169.7526	34663.57	167.3994	69830.2	337.2282	5.95E+12	6340.891	6.68981	32.30684	0.455592	2.200174	7.145402	34.50701	33.34482	161.0308	30.2742	146.202	63.61904	307.2329
2568287	18484.31	115.2872	26001.57	162.2451	44485.86	277.5836	4.48E+12	6167.395	2.257579	14.08688	0.351826	2.195328	2.609404	16.2822	21.71645	135.5067	25.03429	156.2094	46.75071	291.7159
16209700	52097.78	51.4832	135983.1	134.4391	188080.7	185.9451	2.36E+13	5138.51	5.867498	5.800875	2.170794	2.146145	8.038286	7.947015	60.68629	59.99722	242.1208	239.3716	302.807	299.3688
19031030	77828.19	65.50822	168658.8	142.0241	246487.1	207.5617	2.85E+13	5293.149	9.036067	7.609087	2.536684	2.136089	11.57275	9.745175	90.39742	76.12183	259.7046	218.6919	350.1014	294.8132
4355811	17100.22	62.88597	30659.69	112.8013	47759.93	175.7155	7.15E+12	5803.137	2.357502	8.673581	0.643914	2.36905	3.001417	11.04264	18.62193	68.51269	66.09533	243.174	84.71712	311.6862
43463960	122823.2	45.26601	321198.5	118.4294	444021.7	163.7157	7.63E+13	6205.191	17.33106	6.390154	5.857832	2.159847	23.18891	8.550008	182.5158	67.29559	623.0416	229.7223	805.5573	297.0179
6753839	18283.45	43.36394	51898.84	123.1466	70182.33	166.53	1.25E+13	6519.258	2.700268	6.407249	0.861528	2.044251	3.561796	8.451501	30.2059	71.67315	88.15142	209.1674	118.3573	280.8406
13940380	43279.79	49.73153	93721.7	107.741	137001.5	157.4948	2.53E+13	6424.345	7.692493	8.843171	1.84101	2.116397	9.533486	10.95955	46.5389	53.5004	173.2781	199.1978	219.817	252.6983
41030350	152475.3	59.52721	301930.9	117.9282	454406.3	177.4821	7.32E+13	6303.379	24.76933	9.67441	5.425697	2.11917	30.19501	11.79357	162.8961	63.62399	500.4846	195.4793	663.3797	259.1029
3761532	10839.55	46.16021	26383.93	112.4062	37223.46	158.5869	7.61E+12	7150.855	2.147921	9.151007	0.452143	1.926313	2.600065	11.07732	12.7143	54.16806	37.90294	161.4818	50.61729	215.65
8419607	34250.13	65.16158	62551.44	119.0586	96801.66	184.2495	1.30E+13	5466.52	4.065001	7.737209	1.285313	2.446429	5.35031	10.18363	39.47289	75.13158	139.5985	265.7078	1/9.0/12	340.8391
12461560	61421.95	78.95367	101088.4	130.0002	162510.4	208.9893	2.00E+13	5662.889	7.148158	9.192573	1.887091	2.42681	9.03525	11.61938	72.86018	93.69862	191.2623	245.9644	264.1223	339.6628
1124422	52969.93	109.8461	/5085.95	155.7787	128055.9	265.6741	1.42E+13	6486.355	6.896215	14.30739	1.029563	2.136005	7.925781	16.4434	59.73603	123.9327	69.10635	143.373	128.8423	267.3055
13/0/580	101/1/.4	118.8655	141354.8	100.2589	243072.2	284.1776	2.41E+13	0220.221	12.18021	14.23998	1.894849	2.215282	14.0/506	10.45526	118.3076	138.3143	134.2059	100.9012	202.5135	293.2155
31517420	142/56.6	/2.5549	25/647.8	131.006	400404.6	203.5935	5.4/E+13	0135.967	18./1/99	9.517523	4.3/3405	2.223743	23.09139	11.74126	167.9633	85.40418	409.6734	208.3064	5/7.6359	293.7102
200113534	1103296		2045650		3148946		4.29E+14		101.225		34.11567		185.3406		1300.439		3213.867		4014.303	

Fecal

Costs prorated by catchment based on length of ROW; see copmutation, below. * Includes 5% Administration plus 35% contingency ** Includes replacement purchases of new sweepers; straight-line depreciation

Assumed fraction that can be cleaned	100%	68763.2 m
Passes per street, curb to curb:	2 #/st	137526.4 m total cleaning length
Operating speed (3-15 km/hr):	10 km/hr	13.75 hrs to clean all streets
Cleaning schedule: 1/mo	th 12 /year or	165.00 hrs/yr
Annual operating time per unit, less	10% down time:	1872 hr
# units to purchase (1 minimum):		1
% utilization of s	eepers:	8.8%
Capital cost (at start):	\$260,000 /unit *1.4	\$364,000 incl 1.4 for admin & contingency
Replacement schedule:	6 years	
Replacement capital cost (over 20 yes	s): \$520,000 total *1.4	\$728,000 incl 1.4 for admin & contingency
,	or	\$36,400 /yr
O&M cost, per CWP:	\$65 /hr	\$10,725 /yr

Table D9(i) - Street Sweeping (1x per week) Costs & Loading Results

No Treatment Base Case Alternative Strategy - Street Cleaning, Once per Week

jmr Date: Revised:

By

07-Dec-09	

07-Dec-09 10-Apr-10	Raw Data f	or alternativ	/e. from Wi	nSLAMM. s	orted by C	atchment #													
					,				Fecal Coliform										
		Particulat	Particulat		Filterable		Total	Fecal	Bacteria		Particulat		Filterable		Total		Particulat		Filterable
		e Solids	e Solids		Solids		Solids	Coliform	Concentr		e Copper		Copper		Copper		e Zinc		Zinc
		Yield for	Concentr	Filterable	Concentr	Total	Concentr	Bacteria	ation	Particulat	Concentr	Filterable	Concentr	Total	Concentr	Particulat	Concentr	Filterable	Concentr
S	Runoff	Alternativ	ation	Solids	ation	Solids	ation	Yield	(#/100	e Copper	ation	Copper	ation	Copper	ation	e Zinc	ation	Zinc Yield	ation
	Volume (cf) e (lbs)	(mg/L)	Yield (Ibs)	(mg/L)	Yield (lbs)	(mg/L)	(count)	ml)	Yield (lbs)	(ug/L)	Yield (Ibs)	(ug/L)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	(lbs)	(ug/L)
11	5071220	0 36022.81	113.7854	51130.55	161.5784	87153.5	275.4151	9.06E+12	6315.363	4.169806	13.17707	0.699529	2.210594	4.869334	15.38766	42.30537	133.6899	49.03117	154.9442
80	10716470	0 69850.56	104.4093	102625.5	153.4683	172476.1	257.9244	1.87E+13	6180.548	8.033375	12.01328	1.513522	2.263353	9.546894	14.27663	82.62265	123.5557	118.6047	177.364
83	6061920	0 50708.14	133.9951	63065.06	166.7224	113773.2	300.7773	1.09E+13	6332.848	7.207311	19.05367	0.835373	2.208441	8.042684	21.2621	55.52831	146.7979	56.29726	148.830
10	004044	007/045	100 1014	24//257	1/7 2004	(7422.02	225 / 51/	E OFE 10	/ 2/0 001	F 700070	27.0/5//	0 455500	2 200174	1 24/ 471	20 1/504	22 42 42	157 5054	20.2742	147.001

Total Length Annua Annual Particulate Particulate of ROW nnual Runoff Solids (TSS) nnual Runoff Solids (TSS) Annual OM&R Total Cost \$ per Kg TSS Catchment Removal Cleaned Volume Volume Efficiency Capital Cost* Cost** over 20 Years Removed Yield Annually Area Yield 52 # of Sweepers Purchased: (ha) (m3) (Kg) (m3 (Kq) (Km) (\$) (\$/vr) (\$) 143,606 8,300 \$ 1,880 16.45 17,07 143,606 16,340 4.3% 162.6 \$ \$45,900 \$3. 31.651 303,468 33.069 303,468 31,684 4.2% 469.86 \$ 23,900 \$ 5.450 \$132,900 \$4.8 171.661 23,001 234.16 \$ 11.900 S \$1.83 20.603 24 806 171 661 7.3% 2.710 \$66,100 11.081 93,971 16,669 93,971 14,864 10.8% 204.13 \$ 10,400 \$ 2,370 \$57,800 \$1.60 8.057 72,728 8 5 3 0 72 728 8 164 4.3% 153.83 \$ 7.800 \$ 1,780 \$43,400 \$5.93 26.504 459.024 23.889 459.024 23.240 2.7% 257.35 \$ 13,100 \$ 2.980 \$72.700 \$5.60 34,592 3.3% 329.71 \$ 16,800 \$ \$3.95 30.899 538,918 35,771 538,918 3,820 \$93,200 6.722 123.347 7.923 123.347 7,504 5.3% 126.87 \$ 6.500 \$ 1.470 \$35,900 \$4.28 55.779 1.230.807 56.846 1.230.807 53.993 5.0% 933.97 \$ 47.500 \$ 10.820 \$263,900 \$4.62 8.401 8,478 8,013 5.5% 118.76 \$ 6,000 \$ \$33,600 \$3.61 10 191,254 191,254 1,380 11 18 082 394 762 20 328 394 762 18 576 8.6% 420.04 \$ 21.400 \$ 4 870 \$118,800 \$3.39 12 13 \$3.00 65.957 7.5% 63.311 1.161.893 71.276 1.161.893 1129.99 \$ 57.500 \$ 13.100 \$319.500 4.658 106,519 5,125 106,519 4,602 10.2% 159.37 \$ 8,100 \$ 1,850 \$45,100 \$4.31 14 13 634 238 414 15 757 238 425 15 200 3 5% 220.1 \$ 11 200 \$ 2 550 \$62,200 \$5.58 15 16 24,949 28.251 27,269 3.5% 378.53 \$ 19,300 \$ 4.390 \$107,100 \$5.45 352.885 352.885 23.707 218,739 24,514 218,739 23,288 5.0% 356.78 \$ 18,200 \$ 4,130 \$100,800 \$4.11 17 44 719 388 170 46 897 388 170 44 989 4 1% 553 31 \$ 28 200 \$ 6 4 1 0 \$156.400 \$4.10 18 63 642 892 507 66,000 892 507 62 864 4.8% 942 02 \$ 47.900 \$ 10.920 \$266.300 \$4.25 511,208 472.850 7,082,673 7,082,684 484,140 7,151.38 \$364,000 \$82,880 \$2,021,600 \$3.73

Costs prorated by catchment based on length of ROW; see copmutation, below. Includes 5% Administration plus 35% contingency

** Includes replacement purchases of new sweepers; straight-line depreciation

Computation of Capital and	I OM&R Costs:		
Assumed fraction that can	be cleaned:	100%	68763.2 m
Passes per street, curb to c	urb:	2 #/st	137526.4 m total cleaning length
Operating speed (3-15 km/	hr):	10 km/hr	13.75 hrs to clean all streets
Cleaning schedule:	1/week	52 /year or	715.00 hrs/yr
Annual operating time per	unit, less	10% down time:	1872 hr
# units to purchase (1 mini	mum):		1
% utili	zation of sweepers:		38.2%
Capital cost (at start):		\$260,000 /unit *1.4	\$364,000 incl 1.4 for admin & contingency
Replacement schedule:		6 years	
Replacement capital cost (e	over 20 years):	\$520,000 total *1.4	\$728,000 incl 1.4 for admin & contingency
		0	r \$36,400 /yr
O&M cost, per CWP:		\$65 /hr	\$46,475 /yr

Yield (lbs) (ug/L) Yield (lbs) (ug/L) Yield (lbs) (ug/L) (lbs) (ug/L) Yield (lbs) (ug/L) 707 0.699529 2.210594 4.869334 15.38766 42.30537 133.6899 49.03117 154.9442 91.33656 288.6341 328 1.513522 2.263353 9.546894 14.27663 82.62265 123.5557 118.6047 177.364 201.2274 300.9198 367 0.835373 2.208441 8.042684 21.2621 55.52831 146.7979 56.29726 148.8307 111.8255 295.6285 5.790878 27.96566 0.455592 2.200174 6.246471 30.16584 32.4243 156.5854 30.2742 146.202 62.69852 302.7875 2568287 17999.12 112.261 26001.57 162.2451 44000.68 274.5562 4.48E+12 6167.395 2.075634 12.95158 0.351826 2.195328 2.427458 15.1469 21.53014 134.3441 25.03429 156.2094 46.56441 290.5534 16209700 51236.66 50.63224 135983.1 134.4391 187219.5 185.0937 2.36E+13 5138.51 5.544591 5.481635 2.170794 2.146145 7.715379 7.627774 60.35559 59.67027 242.1208 239.3716 302.4765 299.042 76262.2 64.19012 168658.8 142.0241 244921.1 206.243 2.855+13 5293.149 8.448841 7.114596 2.536684 2.136089 10.98552 9.250684 8.97061 75.61546 259.7046 218.6919 349.5003 294.3011 4355811 16543.2 60.83754 30659.69 112.8013 47202.95 173.6663 7.15E+12 5803.137 2.148626 7.905097 0.643914 2.36905 2.79254 10.27415 18.40803 67.72572 66.09533 243.174 84.50321 310.8992 43463960 119034.1 43 86958 321198.5 118.4294 440232.8 162.3187 7.63E+13 6205.191 15.91019 5.866264 5.857832 2.159847 21.76804 8.026116 181.0609 66.75914 623.0416 229.7223 804.1023 296.4814 5753839 17666.63 41 90099 51898.84 123.1466 67555.48 165.0663 1.25E+13 6519.258 2.468958 5.558392 0.861528 2.044251 3.33049 7.90253 2.9 96904 71.11113 88.15142 2.09.1674 118.1205 280.2786 13940380 40953.08 47.05798 93721.7 107.741 134674.8 154.82 2.53E+13 6424.345 6.819972 7.840133 1.84101 2.116397 8.660973 9.956519 45.64544 52.47328 173.2781 199.1978 218.9235 251.6711 1030305 145411.7 56.76954 301930.9 117.9282 447342.7 174.7232 7.328+13 6303.379 22.12043 8.639803 5.425697 2.11917 27.54614 10.75898 160.1837 62.56458 500.4846 195.4793 660.6669 258.0434 3761532 10145.32 43.20382 26383.93 112.4062 36529.23 155.6292 7.61E+12 7150.855 1.88758 8.041852 0.452143 1.926313 2.339723 9.968163 12.44772 53.03229 37.90294 161.4818 50.35067 214.5141 8419607 33510 36 63 75415 62551 44 119 0586 96061 97 182 8416 1 30E+13 5466 52 3 787578 7 209169 1 285313 2 446429 5 072887 9 65559 39 18885 74 59096 139 5985 265 7078 178 787 340 2982 14461560 60117.84 77.27732 1010884 130.0002 161206.2 207.3121 2.00E+13 5662.889 6.659126 8.5663675 1.887091 2.42661 8.546222 10.99049 72.35943 93.05465 191.2623 245.9644 263.6214 339.0187 7724422 51342.5 106.4712 75085.95 155.7787 126428.5 262.2976 1.42E+13 6486.355 6.285925 13.04123 1.029563 2.136005 7.31549 15.17724 59.11109 122.6361 69.10635 143.373 128.2174 266.0091 13707580 99183 32 115 9041 141354 8 165 2589 240538 3 281 2151 2 41E+13 6225 221 11 22993 13 129 1 894849 2 215282 13 12477 15 34426 117 3345 137 1767 134 2059 156 9012 251 5404 294 0778 31517420 138593 70.43882 257647.8 131.006 396241.2 201.4765 5.47E+13 6135.967 17.15669 8.723652 4.373405 2.223743 21.53007 10.94738 166.3647 84.59135 409.6734 208.3064 576.0374 292.8974 250113534 1067350 137.7454 2045650 3113001 4.29E+14 34.11567 171.8611 1286.636 3213.867 4500.5

e Zinc ation Zinc Yield ation Total Zinc ation

Total Zing

Concentr

Table D9(j) - Street Sweeping (2x per week) Costs & Loading Results

nnual Runoff Solids (TSS)

Volume

(m3)

143,606

303,468 171,661

93,971

72,728

538,918

123,347

191,254

394,762

106,519

238.414

352,885

218,739

388.170

892 507

7,082,673

1,161,893

1.230.807

Catchment

Area

(ha)

16.451

31.651

20.603

11.081

8.057

26.504

30.899

6.722 55.779

8.401

18.082 63.311

4.658

13.634

24.949

23.707

44,719

63 642

472.850

17

18

Annual

Particulate

Yield

(Kg) 17,079

33,069

24 806

16,669

8 5 3 0

23.889

35,771

7,923

56.846

8,478

20.328

71,276

5,125

15.757

28,251

24,514

46.897

66,000

511,208

No Treatment Base Case Alternative Strategy - Street Cleaning, Twice per Week

Annual Runoff Solids (TSS)

Volume

(m3)

143,606

303,468

171.661

93,971

72,728

459.024

538,918

123.347

191,254

394,762

106,519

238.425

352.885

218,739

388.170

892 507

7,082,684

1.161.893

1.230.807

Annual

Particulate

Yield

(Kg) 16,101

31,236 22,418

14,281

8,046

23.031

34,211

7,368 53.071

7,863

18,010 64,239

4,433

15.020

26,952

22,893

44.372

61.852

475,397

Total Length

of ROW

Cleaned

Annually

104

(Km)

325.21 \$

408.26 \$

307.65 \$

514.7 \$

659.42 \$

253.74 \$

237.52 \$

840.07 \$

2259.98 \$

318.74 \$

440.19 \$

757.06 \$

713.56 \$

1867.94 \$

Removal

Efficiency

5.7%

5.5% 9.6%

14.3%

5.7% 3.6%

4.4%

7.0%

7.3% 11.4% 9.9%

13.5%

4.7%

4.6%

6.6%

5.4%

6.3%

jmr Date: 07-D Revised:

By:

Annual OM&R Total Cost

4,240

3,690

2,780

4.650

5,960

2,290

16.890

2,150

2,880

3,980 6,850

6,450

1 (\$/yr) 2,940 8,500

over 20 Years

\$2,950,800

Capital Cost* Cost**

of Sweepers Purchased:

8,300 \$

10,400 \$

7,800 \$

13,100 \$

16,800 \$

6,500 \$ 47,500 \$

6,000 \$

8,100 \$

11,200 \$ 19,300 \$

18,200 \$

1106.62 \$ 28,200 \$ 10,010 1884.04 \$ 47,900 \$ 17,040

14,302.73 \$364,000 \$129,340

21,400 \$ 7,600 57,500 \$ 20,440

(\$)

939.72 \$ 23,900 \$ 468.31 \$ 11,900 \$

07-Dec-09	
10-Apr-10	Raw Data for alternative, from WinSLAMM, sorted by Catchment #:

										Fecal												
			Dentioulet	Dentioulat		Citerratela		Tetal	Freed	Coliform		Destinuted		Citeschie		Tetel		Deatherdat		Citerratela		
			Particulat	Particulat		Filterable		Calida	Celliferen	Bacteria		Particulat		Filterable		Total		Particulat		Filterable		Tetel 7ine
			e solids	e solids	Cittanakia	Solids	Tetel	Solius	Destasia	concentr	Destinuted	e copper	Citerratele	Copper	Tetal	Copper	Destinuted	e zinc	Ciltoredula	ZINC		Caracteria
otal Cast	f por Ka TSS	Dupoff	Altornativ	ation	Colide	otion	Solida	otion	Viold	/#/100	- Coppor	otion	Coppor	otion	Connor	ation	o Zipo	ation	7ine Viold	otion	Total 7ina	ation
	a per ky i 33 Demourad	Kunon	Alternativ	(2001)	Vield (Ibe)	(m = (l)	JUIIUS	(m = (1)	(munt)	(#7100	e coppei	(Vield (Ibe)	(1011	Viele (IP-)	(4101	(lba)	(Vialat (lba)	(
er zu rears	Removed	volume (ci)	e (ibs)	(mg/L)	riela (ibs)	(mg/L)	rield (IDS)	(mg/L)	(count)	mi)	rield (IDS)	(ug/L)	riela (IDS)	(ug/L)	rield (IDS)	(ug/L)	rieid (ibs)	(ug/L)	(IDS)	(ug/L)	riela (ibs)	(ug/L)
(\$)																						
\$67 100	\$3.43	5071220	35495 97	112 1212	51130 55	161 5784	86626.64	273 7502	9.06F+12	6315 363	3 972234	12 55272	0.699529	2 210594	4 671764	14 76332	42 10303	133 0505	49 03117	154 9442	91 13424	287 9948
\$193,900	\$5.29	10716470	68863.68	102 9342	102625.5	153 4683	171489 3	256 4487	1.87F+13	6180 548	7 6633	11 45986	1 513522	2 263353	9 176823	13 72322	82 24369	122 989	118 6047	177 364	200 8484	300 353
\$96,700	\$2.02	6061920	49422.5	130 5978	63065.06	166 7224	112487.6	297 3787	1.09E+13	6332 848	6 725209	17 77915	0.835373	2 208441	7.560585	19 9876	55 03463	145 4927	56 29726	148 8307	111 3319	294 3235
\$84,200	\$1.76	3318446	31483.86	151 9758	34663 57	167 3994	66147.45	319 4432	5.95E+12	6340 891	5 308787	25.63752	0.455592	2 200174	5 764376	27 83767	31 93063	154 2013	30 2742	146 202	62 2049	300 4037
\$63,400	\$6.55	2568287	17738 91	110 6381	26001.57	162 2451	43740.45	272 9324	4 48F+12	6167 395	1 978058	12 34272	0.351826	2 195328	2 329883	14 53804	21 43021	133 7206	25 03429	156 2094	46 46448	289 9299
\$106,100	\$6.18	16209700	50774 87	50 1759	135983.1	134 4391	186757.9	184 6373	2.36E+13	5138 51	5 371415	5.310425	2 170794	2 146145	7 542204	7 456566	60 17827	59 49497	242 1208	239 3716	302 2991	298 8666
\$136,000	\$4.36	19031030	75422.36	63 48323	168658.8	142 0241	244081.3	205 5358	2.85E+13	5293 149	8 133906	6 849396	2 536684	2 136089	10.67059	8 98549	89.47356	75.34386	259 7046	218 6919	349 1778	294 0355
\$52,300	\$4.71	4355811	16244 47	59 73898	30659.69	112 8013	46904.23	172 5672	7.15E+12	5803 137	2.036603	7 49295	0.643914	2 36905	2 680517	9 861999	18 29332	67.30368	66 09533	243 174	84 38859	310 4775
\$385.300	\$5.10	43463960	117002.1	43.12068	321198.5	118,4294	438200.9	161.5695	7.63E+13	6205.191	15.14818	5.585301	5.857832	2.159847	21.00602	7.745152	180.2806	66.47144	623.0416	229.7223	803.3217	296.1935
\$49.000	\$3.98	6753839	17335.83	41.11641	51898.84	123,1466	69234.76	164.2816	1.25E+13	6519.258	2.344909	5.564047	0.861528	2.044251	3.206435	7.608292	29.842	70.80968	88.15142	209.1674	117,9935	279,9773
\$173,400	\$3.74	13940380	39705.28	45.62416	93721.7	107.741	133426.9	153.3855	2.53E+13	6424.345	6.352046	7.302214	1.84101	2.116397	8,193048	9,4186	45.16628	51.92245	173.2781	199,1978	218,4444	251.1203
\$466,300	\$3.31	41030350	141623.4	55.29055	301930.9	117.9282	443554.7	173.2436	7.32E+13	6303.379	20.69984	8.084946	5.425697	2.11917	26.12554	10.20412	158.7289	61.99637	500.4846	195.4793	659.2122	257.4752
\$65,700	\$4.75	3761532	9773.002	41.61831	26383.93	112.4062	36156.9	154.043	7.61E+12	7150.855	1.74796	7.447015	0.452143	1.926313	2.200104	9.373328	12.30476	52.42321	37.90294	161.4818	50.20774	213.9052
\$90,800	\$6.16	8419607	33113.6	62.99931	62551.44	119.0586	95665.11	182.0862	1.30E+13	5466.52	3.638794	6.925977	1.285313	2.446429	4.924107	9.372406	39.03649	74.30094	139.5985	265.7078	178.6348	340.0084
\$156,300	\$6.02	12461560	59418.49	76.37836	101088.4	130.0002	160506.8	206.4127	2.00E+13	5662.889	6.396863	8.226402	1.887091	2.42681	8.283957	10.65322	72.09082	92.70921	191.2623	245.9644	263.3528	338.6733
\$147,200	\$4.54	7724422	50469.69	104.6612	75085.95	155.7787	125555.8	260.4872	1.42E+13	6486.355	5.95863	12.3622	1.029563	2.136005	6.988195	14.49821	58.77593	121.9408	69.10635	143.373	127.8822	265.3137
\$228,400	\$4.52	13707580	97824.38	114.3161	141354.8	165.2589	239179.2	279.6263	2.41E+13	6225.221	10.72028	12.53316	1.894849	2.215282	12.61513	14.74844	116.8126	136.5665	134.2059	156.9012	251.0185	293.4677
\$388,700	\$4.69	31517420	136360.2	69.30399	257647.8	131.006	394007.9	200.3409	5.47E+13	6135.967	16.31935	8.297892	4.373405	2.223743	20.69275	10.52163	165.5072	84.15533	409.6734	208.3064	575.1801	292.4615
\$2.950.800	\$4.12	250113534	1048073		2045650		3093724		4.29E+14		130.5164		34.11567		164.632		1279.233		3213.867		4493.097	

Costs prorated by catchment based on length of ROW; see copmutation, below. * Includes 5% Administration plus 35% contingency ** Includes replacement purchases of new sweepers; straight-line depreciation

Assumed fraction that car	n be cleaned:	100%	68763.2 m
Passes per street, curb to	curb:	2 #/st	137526.4 m total cleaning length
Operating speed (3-15 kn	1/hr):	10 km/hr	13.75 hrs to clean all streets
Cleaning schedule:	2/week	104 /year or	1430.00 hrs/yr
Annual operating time pe	er unit, less	10% down time:	1872 hr
# units to purchase (1 mir	nimum):		1
% uti	lization of sweepers:		76.4%
Capital cost (at start):		\$260,000 /unit *1.4	\$364,000 incl 1.4 for admin & contingency
Replacement schedule:		6 years	
Replacement capital cost	(over 20 years):	\$520,000 total *1.4	\$728,000 incl 1.4 for admin & contingency
		or	\$36,400 /yr
O&M cost, per CWP:		\$65 /hr	\$92,950 /yr

Table D9(k) - Street Sweeping (daily) Costs & Loading Results

Catchment

Area

(ha)

16.451

31.651

20.603

11.081

8 057

26.504

30.899

6.722 55.779

8.401

18.082

63.311

4.658

13.634

24.949

23.707

44 719

63 642

472.850

6

9

18

Annual

Particulate

Yield

(Kg) 17,07

33,069

24 806

16,669

8 5 3 0

23.889

35,771

7,923

56.846

8,478

20.328

71,276

5,125

15.757

28,251

24,514

46.897

66,000

511,208

nnual Runoff Solids (TSS)

Volume

(m3)

143,606

303,468 171,661

93,971

72,728

538,918

123.347

1.230.807

191,254

394,762

106,519

238.414

352.885

218,739

388.170

892 507

7,082,673

1.161.893

No Treatment Base Case Alternative Strategy - Street Cleaning, Once per Day

Volume

(m3)

143,606

303,468

171 661

93,971

72 728

459.024

538,918

123.347

1.230.807

191,254

394,762

106,519

238.425

352.885

218,739

388 170

892 507

7,082,684

1.161.893

Annual

Particulate

Yield

(Kg) 15,822

30,713

13,600

7,908

22.786

33,766

7,210 51,995

7,688

17,349 62,234

4,236

14.810

26,581

22,431

43.653

60,670

465,189

21 737

nnual Runoff Solids (TSS)

Total Length

of ROW

Cleaned

Annually

Removal

Efficiency

7.4%

7.1%

12.4%

18.4%

7.3%

4.6%

5.6%

9.0% 8.5%

9.3%

14.7%

12.7%

17.3%

6.0%

5.9%

8.5%

6.9%

8.1%

By: Date: jmr 07-Dec Revised: 10-Apr

c-09	
r-10	Raw Data for alternative, from WinSLAMM, sorted by Catchment #:

													Fecal												
						Dorticulat	Dorticulat		Filtorable		Total	Focal	Coliform		Dorticulat		Filtorable		Total		Dorticulat		Filtorable		
						- Calida	- C-lld-		Calida		Callala	California	Canada		- Common		Canada		Common		- 71		7ime		Tetel 7ine
carcength						e solids	e solids	F 11	SOlids	.	SOlids	Colliorm	concentr		e copper	F	copper	T	copper		ezinc		ZINC		Total Zinc
OF ROW			T	A 11 TOO		Yield for	Concentr	Filterable	Concentr	lotal	Concentr	Bacteria	ation	Particulat	Concentr	Filterable	Concentr	Iotai	Concentr	Particulat	Concentr	Filterable	Concentr		Concentr
cleaned	μ	nnuai OM&R	Total Cost	s per kg ISS	RUNOTT	Alternativ	ation	Solids	ation	Solids	ation	rield	(#/100	e copper	ation	Copper	ation	copper	ation	e zinc	ation	ZINC YIEId	ation	Total Zinc	ation
Annually C	apital Cost*	Cost**	over 20 Years	Removed	Volume (cf	e (lbs)	(mg/L)	Yield (lbs)	(mg/L)	Yield (lbs)	(mg/L)	(count)	ml)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	Yield (lbs)	(ug/L)	(lbs)	(ug/L)	Yield (lbs)	(ug/L)
364 #0	of Sweepers Pu	irchased:	3																						
(Km)	(\$)	(\$/yr)	(\$)																						
1138.23 \$	24,800	\$ 9,880	\$222,400	\$8.85	5071220	34881.08	110.179	51130.55	161.5784	86011.7	271.8069	9.06E+12	6315.363	3.741657	11.82407	0.699529	2.210594	4.441186	14.03466	41.86696	132.3045	49.03117	154.9442	90.89817	287.2487
3289.03 \$	71,700	\$ 28,550	\$642,700	\$13.64	10716470	67711.92	101.2126	102625.5	153.4683	170337.6	254.7265	1.87E+13	6180.548	7.231406	10.814	1.513522	2.263353	8.744932	13.07736	81.80149	122.3277	118.6047	177.364	200.4061	299.6916
1639.09 \$	35,800	5 14,230	\$320,400	\$5.22	6061920	47922.14	126.6331	63065.06	166.7224	110987.2	293.4123	1.09E+13	6332.848	6.162578	16.29175	0.835373	2.208441	6.997953	18.50019	54.45853	143.9697	56.29726	148.8307	110.7558	292.8004
1428.92 \$	31,200	5 12,400	\$279,200	\$4.55	3318446	29983.49	144.7334	34663.57	167.3994	64647.09	312.1976	5.95E+12	6340.891	4.746153	22.92041	0.455592	2.200174	5.201746	25.12059	31.3545	151.4191	30.2742	146.202	61.62875	297.6213
1076.78 \$	23,500	\$ 9,350	\$210,500	\$16.92	256828	17435.24	108.744	26001.57	162.2451	43436.78	271.0375	4.48E+12	6167.395	1.86418	11.63214	0.351826	2.195328	2.216005	13.82747	21.31361	132.9931	25.03429	156.2094	46.34789	289.2024
1801.44 \$	39,300	5 15,640	\$352,100	\$15.96	16209700	50235.88	49.64326	135983.1	134.4391	186218.7	184.1042	2.36E+13	5138.51	5.169306	5.11061	2.170794	2.146145	7.340099	7.256755	59.97136	59.29041	242.1208	239.3716	302.092	298.6619
2307.98 \$	50,300	\$ 20,030	\$450,900	\$11.24	19031030	74442.23	62.65826	168658.8	142.0241	243101.1	204.7104	2.85E+13	5293.149	7.766364	6.539896	2.536684	2.136089	10.30305	8.675988	89.09724	75.02697	259.7046	218.6919	348.8015	293.7186
888.09 \$	19,400	5 7,710	\$173,600	\$12.17	435581	15895.84	58.4569	30659.69	112.8013	46555.6	171.2846	7.15E+12	5803.137	1.905866	7.01195	0.643914	2.36905	2.549782	9.381007	18.15945	66.81116	66.09533	243.174	84.25465	309.9847
6537.8 \$	142,600	56,750	\$1,277,600	\$13.17	43463960	114630.7	42.24671	321198.5	118.4294	435829	160.6949	7.63E+13	6205.191	14.25887	5.257401	5.857832	2.159847	20.1167	7.417251	179.3699	66.13567	623.0416	229.7223	802.4113	295.8579
831.3 \$	18,100	5 7,220	\$162,500	\$10.28	6753839	16949.78	40.2008	51898.84	123.1466	68848.66	163.3654	1.25E+13	6519.258	2.200135	5.220524	0.861528	2.044251	3.061663	7.264774	29.69377	70.45795	88.15142	209.1674	117.8452	279.6255
2940.25 \$	64,100	\$ 25,520	\$574,500	\$9.64	13940380	38249	43.95079	93721.7	107.741	131970.6	151.7113	2.53E+13	6424.345	5.805943	6.674422	1.84101	2.116397	7.646945	8.790809	44.60707	51.27959	173.2781	199.1978	217.8852	250.4774
7909.94 \$	172,500	68,660	\$1,545,700	\$8.55	41030350	137202.3	53.56453	301930.9	117.9282	439133.5	171.5168	7.32E+13	6303.379	19.04191	7.437392	5.425697	2.11917	24.46762	9.556566	157.0314	61.33334	500.4846	195.4793	657.5143	256.8121
1115.59 \$	24,300	9,680	\$217,900	\$12.26	3761533	9338.479	39.76789	26383.93	112.4062	35722.38	152.1917	7.61E+12	7150.855	1.585015	6.752803	0.452143	1.926313	2.03716	8.679122	12.1379	51.71233	37.90294	161.4818	50.04087	213.1943
1540.67 \$	33,600	13,370	\$301,000	\$15.89	841960	32650.56	62.11837	62551.44	119.0586	95202.13	181.205	1.30E+13	5466.52	3.465159	6.595485	1.285313	2.446429	4.750472	9.041914	38.85866	73.96247	139.5985	265.7078	178.4569	339.6699
2649.7 \$	57.800	\$ 23.000	\$517.800	\$15.50	12461560	58602.27	75.32917	101088.4	130.0002	159690.6	205.363	2.00E+13	5662.889	6.090782	7.832781	1.887091	2.42681	7.977874	10.25959	71,77749	92.30627	191.2623	245.9644	263.0396	338.2704
2497.48 \$	54,500	21.680	\$488,100	\$11.72	7724422	49451.07	102.5489	75085.95	155.7787	124537.2	258.3737	1.42E+13	6486.355	5.57665	11.56972	1.029563	2.136005	6.606214	13,70573	58.38481	121.1293	69.10635	143.373	127.491	264,502
3873.18 \$	84,500	33.620	\$756.900	\$11.67	13707580	96238.24	112,4626	141354.8	165.2589	237593	277.7718	2.41E+13	6225.221	10.12551	11.83781	1.894849	2.215282	12.02034	14.05308	116.2035	135.8544	134.2059	156.9012	250.4095	292.7557
6594.15 \$	143,800	57.240	\$1,288,600	\$12.09	31517420	133754.3	67 97958	257647.8	131.006	391402.2	199 016	5 47E+13	6135 967	15 34214	7 801009	4 373405	2 223743	19 71553	10.02474	164 5065	83 64655	409 6734	208 3064	574 1793	291 9526
50.059.62	\$1.091.800	\$434,530	\$9,782,400	\$10.63	250113534	1025575		2045650		3071225		4.29E+14		122.0796		34,11567		156.1953		1270.594		3213.867		4484,458	

Costs prorated by catchment based on length of ROW; see copmutation, below. * Includes 5% Administration plus 35% contingency

** Includes replacement purchases of new sweepers; straight-line depreciation

Computation of Capital and OM&R Costs:		
Assumed fraction that can be cleaned:	100%	68763.2 m
Passes per street, curb to curb:	2 #/st	137526.4 m total cleaning length
Operating speed (3-15 km/hr):	10 km/hr	13.75 hrs to clean all streets
Cleaning schedule: 1/day	364 /year or	5005.00 hrs/yr
Annual operating time per unit, less	10% down time:	1872 hr
# units to purchase (1 minimum):		3
% utilization of sweepers		267.4%
Capital cost (at start):	\$260,000 /unit *1.4	\$1,092,000 incl 1.4 for admin & contingency
Replacement schedule:	6 years	
Replacement capital cost (over 20 years):	\$1,560,000 total *1.4	\$2,184,000 incl 1.4 for admin & contingency
	or	\$109,200 /yr
O&M cost. per CWP:	\$65 /hr	\$325.325 /vr

City of White Rock

13

14

15

16

17

Table D10 - Summary of Costs for Urban Runoff Treatment Strategies

5,125

28,251

24,514

46,897

66,000

511,208

50%

50%

50%

50%

50%

50%

\$135,200

\$227,900

\$294,000

\$531,300

\$166,600

\$193,200

\$4,904,900

4.658

13.634 24.949

23.707

44.719

63.642

472.85

NOTE: Class D Cost Estimates

L Leas D Cost Extinates Capital Costs for End-cPipe and Biofiltration Systems include 5% administration, 15% engineering and 35% contingency Capital Costs for Street Sweepers include 5% administration and 35% contingency O&M Costs for End-cPipe and Biofiltration Systems are based on a percentage of Capital Costs O&M Costs for Street Sweepers are based on an hourly cost applied to annual usage

END-of-PIPE TREATMENT SYSTEMS Primary EOP Treatment Only Enhanced EOP Treatment Catchment Annual TSS % TSS Annual O&M Cost over 20 Cost per Kg % TSS Annual O&M Cost over 20 Cost per Kg Capital Cost @ 4% Catchment # Area Generated Removal years TSS Removed Removal Capital Cost Cost @ 6% years (\$/yr) \$6,720 (\$) (\$/Ka) (%) (\$) (ha) (Ka) (%) (\$) (\$) (\$/vr) 16.451 17,079 50% \$168,100 \$302,500 \$1.77 90% \$504,300 \$30,260 \$1,109,500 50% 50% 31.651 33.069 \$335,400 \$13,420 \$14,550 \$603,800 \$1.83 90% 90% \$1,006,200 \$1,091,400 \$60.370 \$2.213.600 \$363,800 \$654,800 \$65,480 \$2,401,000 3 20.603 24.806 \$2.64 50% 50% 50% \$6,660 \$6,660 \$499,700 \$499,700 \$596,200 4 11.081 16,669 \$166,600 \$299,800 \$1.80 90% \$29,980 \$1,099,300 8.530 \$299.800 90% 90% F 8.057 \$166.600 \$3.51 \$29,980 \$1.099.300 26.504 23,889 \$198,700 \$7,950 \$357,700 \$1.50 \$35,770 \$1,311,600 6 \$640,100 \$437,800 \$1,812,900 50% 50% 90% 90% 90% 30.899 35,771 \$213,400 \$8,540 \$384,200 \$1.07 \$38,410 \$1,408,300 8 6.722 7.923 \$145,900 \$5.840 \$262,700 \$3.32 \$26 270 \$963,200 55.779 56,846 50% \$604,300 \$24,170 \$1,087,700 \$108,770 \$3,988,300 \$1.91 9 50% 50% \$7,470 \$336,200 \$787,100 \$560,400 \$1,312,000 10 8.401 8,478 \$186,800 \$3.97 90% 90% \$33,620 \$1,232,800 18.082 20.328 \$437.300 \$3.87 \$78,720 \$2,886,400 11 71,276 \$14,790 90% \$1,109,400 \$2,440,600 12 63 311 50% \$369,800 \$665.600 \$0.93 \$66,560

\$5,410

\$9,120

\$11,760

\$21,250

\$6,660

\$7,730

\$196,190

\$243,400

\$410.300

\$529,200

\$956,300

\$299,800

\$347,800

\$8,828,700

\$4.75

\$2.60

\$1.87

\$3.90

\$0.64

\$0.53

90%

90% 90%

90% 90% 90%

\$405,700

\$683,700 \$882,100

\$1,593,900

\$499,700

\$579,500

\$14,714,700

\$24,340

\$41.020

\$52,930

\$95,630

\$29,980

BIOFILITRATION SYSTEMS																				
				Comple	te Biofiltration !	System			Biofilt	ration for 50% o	of City		Biofiltration for Public ROW <6% Grade							
	Catchment	Annual TSS	% TSS		Annual O&M	Cost over 20	Cost per Kg	% TSS		Annual O&M	Cost over 20	Cost per Kg	% TSS		Annual O&M	Cost over 20	Cost per Kg			
Catchment #	Area	Generated	Removal	Capital Cost	Cost @ 7%	years	TSS Removed	Removal	Capital Cost	Cost @ 7%	years	TSS Removed	Removal	Capital Cost	Cost @ 7%	years	TSS Removed			
	(ha)	(Kg)	(%)	(\$/yr)	(\$)	(\$)	(\$/Kg)	(%)	(\$)	(\$)	(\$)	(\$/Kg)	(%)	(\$)	(\$)	(\$)	(\$/Kg)			
1	16.451	17,079	99%	\$10,004,100	\$700,290	\$24,009,900	\$71.36	49%	\$5,036,800	\$352,580	\$12,088,400	\$71.91	20%	\$789,500	\$55,270	\$1,894,900	\$28.48			
2	31.651	33,069	99%	\$19,113,300	\$1,337,930	\$45,871,900	\$70.38	49%	\$9,623,100	\$673,620	\$23,095,500	\$70.95	19%	\$1,547,700	\$108,340	\$3,714,500	\$29.22			
3	20.603	24,806	99%	\$12,487,300	\$874,110	\$29,969,500	\$61.21	49%	\$6,287,100	\$440,100	\$15,089,100	\$61.69	25%	\$748,400	\$52,390	\$1,796,200	\$14.42			
4	11.081	16,669	99%	\$6,750,200	\$472,510	\$16,200,400	\$49.21	49%	\$3,398,600	\$237,900	\$8,156,600	\$49.58	28%	\$293,800	\$20,570	\$705,200	\$7.48			
5	8.057	8,530	98%	\$4,935,900	\$345,510	\$11,846,100	\$70.56	49%	\$2,485,100	\$173,960	\$5,964,300	\$71.09	5%	\$42,800	\$3,000	\$102,800	\$12.33			
6	26.504	23,889	98%	\$16,023,300	\$1,121,630	\$38,455,900	\$82.10	49%	\$8,077,400	\$565,420	\$19,385,800	\$82.85	10%	\$418,200	\$29,270	\$1,003,600	\$20.99			
7	30.899	35,771	98%	\$18,655,100	\$1,305,860	\$44,772,300	\$63.86	49%	\$9,382,400	\$656,770	\$22,517,800	\$64.30	11%	\$542,300	\$37,960	\$1,301,500	\$17.38			
8	6.722	7,923	98%	\$4,127,500	\$288,930	\$9,906,100	\$63.89	49%	\$2,078,100	\$145,470	\$4,987,500	\$64.37	20%	\$273,000	\$19,110	\$655,200	\$21.04			
9	55.779	56,846	98%	\$33,469,600	\$2,342,870	\$80,327,000	\$72.17	49%	\$16,861,100	\$1,180,280	\$40,466,700	\$72.82	17%	\$1,445,600	\$101,190	\$3,469,400	\$18.25			
10	8.401	8,478	98%	\$5,137,800	\$359,650	\$12,330,800	\$74.56	49%	\$2,586,800	\$181,080	\$6,208,400	\$75.13	20%	\$293,800	\$20,570	\$705,200	\$20.50			
11	18.082	20,328	98%	\$10,966,000	\$767,620	\$26,318,400	\$66.17	49%	\$5,521,100	\$386,480	\$13,250,700	\$66.69	9%	\$168,800	\$11,820	\$405,200	\$11.46			
12	63.311	71,276	98%	\$37,942,700	\$2,655,990	\$91,062,500	\$65.00	49%	\$19,113,300	\$1,337,930	\$45,871,900	\$65.56	23%	\$2,220,600	\$155,440	\$5,329,400	\$16.32			
13	4.658	5,125	98%	\$2,871,100	\$200,980	\$6,890,700	\$68.85	49%	\$1,445,600	\$101,190	\$3,469,400	\$69.36	31%	\$231,400	\$16,200	\$555,400	\$17.33			
14	13.634	15,757	98%	\$8,298,400	\$580,890	\$19,916,200	\$64.56	49%	\$4,188,200	\$293,170	\$10,051,600	\$65.21	12%	\$314,600	\$22,020	\$755,000	\$19.53			
15	24.949	28,251	98%	\$15,085,200	\$1,055,960	\$36,204,400	\$65.27	49%	\$7,595,100	\$531,660	\$18,228,300	\$65.77	9%	\$314,600	\$22,020	\$755,000	\$14.93			
16	23.707	24,514	99%	\$14,346,300	\$1,004,240	\$34,431,100	\$71.27	49%	\$7,233,100	\$506,320	\$17,359,500	\$71.93	15%	\$501,000	\$35,070	\$1,202,400	\$16.61			
17	44.719	46,897	100%	\$26,906,900	\$1,883,480	\$64,576,500	\$69.01	50%	\$13,547,000	\$948,290	\$32,512,800	\$69.56	17%	\$1,466,000	\$102,620	\$3,518,400	\$22.76			
18	63.642	66,000	98%	\$38,140,500	\$2,669,840	\$91,537,300	\$70.46	49%	\$19,212,900	\$1,344,900	\$46,110,900	\$71.08	22%	\$3,479,600	\$243,570	\$8,351,000	\$29.00			
	472.85	511,208		\$285,261,200	\$19,968,290	\$684,627,000			\$143,672,800	\$10,057,120	\$344,815,200			\$15,091,700	\$1,056,430	\$36,220,300				

			STREET CLEAN	IING																							
				Street	Cleaning, Twice/	Year		Street Cleaning, Once/Month						Street (Street	Cleaning, Twice/\	Week		Street Cleaning, Every Day							
	Catchment	Annual TSS	% TSS		Annual O&M	Cost over 20	Cost per Kg	% TSS		Annual O&M	Cost over 20	Cost per Kg	% TSS		Annual O&M	Cost over 20	Cost per Kg	% TSS		Annual O&M	Cost over 20	Cost per Kg	% TSS		Annual O&M	Cost over 20	Cost per K
Catchment #	Area	Generated	Removal	Capital Cost	Cost	years	TSS Removed	Removal	Capital Cost	Cost	years	TSS Removed	Removal	Capital Cost	Cost	years	TSS Removed	Removal	Capital Cost	Cost	years	TSS Removed	Removal	Capital Cost	Cost	years	TSS Remove
	(ha)	(Kg)	(%)	(\$)	(\$)	(\$)	(\$/Kg)	(%)	(\$)	(\$)	(\$)	(\$/Kg)	(%)	(\$)	(\$)	(\$)	(\$/Kg)	(%)	(\$)	(\$)	(\$)	(\$/Kg)	(%)	(\$)	(\$)	(\$)	(\$/Kg)
1	16.451	17,079	0%	\$8,300	\$870	\$25,700	\$29.20	2%	\$8,300	\$1,070	\$29,700	\$5.05	4%	\$8,300	\$1,880	\$45,900	\$3.11	6%	\$8,300	\$2,940	\$67,100	\$3.43	7%	\$24,800	\$9,880	\$222,400	\$8.85
2	31.651	33,069	0%	\$23,900	\$2,510	\$74,100	\$45.18	2%	\$23,900	\$3,100	\$85,900	\$7.79	4%	\$23,900	\$5,450	\$132,900	\$4.80	6%	\$23,900	\$8,500	\$193,900	\$5.29	7%	\$71,700	\$28,550	\$642,700	\$13.64
3	20.603	24,806	0%	\$11,900	\$1,250	\$36,900	\$17.08	3%	\$11,900	\$1,540	\$42,700	\$2.97	7%	\$11,900	\$2,710	\$66,100	\$1.83	10%	\$11,900	\$4,240	\$96,700	\$2.02	12%	\$35,800	\$14,230	\$320,400	\$5.22
4	11.081	16,669	1%	\$10,400	\$1,090	\$32,200	\$14.91	4%	\$10,400	\$1,350	\$37,400	\$2.60	11%	\$10,400	\$2,370	\$57,800	\$1.60	14%	\$10,400	\$3,690	\$84,200	\$1.76	18%	\$31,200	\$12,400	\$279,200	\$4.55
5	8.057	8,530	0%	\$7,800	\$820	\$24,200	\$55.00	2%	\$7,800	\$1,010	\$28,000	\$9.59	4%	\$7,800	\$1,780	\$43,400	\$5.93	6%	\$7,800	\$2,780	\$63,400	\$6.55	7%	\$23,500	\$9,350	\$210,500	\$16.92
6	26.504	23,889	0%	\$13,100	\$1,370	\$40,500	\$51.92	1%	\$13,100	\$1,700	\$47,100	\$9.13	3%	\$13,100	\$2,980	\$72,700	\$5.60	4%	\$13,100	\$4,650	\$106,100	\$6.18	5%	\$39,300	\$15,640	\$352,100	\$15.96
7	30.899	35,771	0%	\$16,800	\$1,760	\$52,000	\$37.14	1%	\$16,800	\$2,170	\$60,200	\$6.42	3%	\$16,800	\$3,820	\$93,200	\$3.95	4%	\$16,800	\$5,960	\$136,000	\$4.36	6%	\$50,300	\$20,030	\$450,900	\$11.24
8	6.722	7,923	0%	\$6,500	\$680	\$20,100	\$40.20	2%	\$6,500	\$840	\$23,300	\$6.98	5%	\$6,500	\$1,470	\$35,900	\$4.28	7%	\$6,500	\$2,290	\$52,300	\$4.71	9%	\$19,400	\$7,710	\$173,600	\$12.17
9	55.779	56,846	0%	\$47,500	\$4,990	\$147,300	\$43.32	2%	\$47,500	\$6,150	\$170,500	\$7.51	5%	\$47,500	\$10,820	\$263,900	\$4.62	7%	\$47,500	\$16,890	\$385,300	\$5.10	9%	\$142,600	\$56,750	\$1,277,600	\$13.17
10	8.401	8,478	0%	\$6,000	\$630	\$18,600	\$33.21	2%	\$6,000	\$780	\$21,600	\$5.84	6%	\$6,000	\$1,380	\$33,600	\$3.61	7%	\$6,000	\$2,150	\$49,000	\$3.98	9%	\$18,100	\$7,220	\$162,500	\$10.28
11	18.082	20,328	1%	\$21,400	\$2,240	\$66,200	\$31.83	3%	\$21,400	\$2,770	\$76,800	\$5.51	9%	\$21,400	\$4,870	\$118,800	\$3.39	11%	\$21,400	\$7,600	\$173,400	\$3.74	15%	\$64,100	\$25,520	\$574,500	\$9.64
12	63.311	71,276	0%	\$57,500	\$6,030	\$178,100	\$28.09	3%	\$57,500	\$7,450	\$206,500	\$4.88	8%	\$57,500	\$13,100	\$319,500	\$3.00	10%	\$57,500	\$20,440	\$466,300	\$3.31	13%	\$172,500	\$68,660	\$1,545,700	\$8.55
13	4.658	5,125	1%	\$8,100	\$850	\$25,100	\$39.22	4%	\$8,100	\$1,050	\$29,100	\$7.00	10%	\$8,100	\$1,850	\$45,100	\$4.31	14%	\$8,100	\$2,880	\$65,700	\$4.75	17%	\$24,300	\$9,680	\$217,900	\$12.26
14	13.634	15,757	0%	\$11,200	\$1,180	\$34,800	\$52.73	1%	\$11,200	\$1,450	\$40,200	\$9.10	4%	\$11,200	\$2,550	\$62,200	\$5.58	5%	\$11,200	\$3,980	\$90,800	\$6.16	6%	\$33,600	\$13,370	\$301,000	\$15.89
15	24.949	28,251	0%	\$19,300	\$2,020	\$59,700	\$50.59	1%	\$19,300	\$2,490	\$69,100	\$8.84	4%	\$19,300	\$4,390	\$107,100	\$5.45	5%	\$19,300	\$6,850	\$156,300	\$6.02	6%	\$57,800	\$23,000	\$517,800	\$15.50
16	23.707	24,514	0%	\$18,200	\$1,900	\$56,200	\$38.49	2%	\$18,200	\$2,350	\$65,200	\$6.69	5%	\$18,200	\$4,130	\$100,800	\$4.11	7%	\$18,200	\$6,450	\$147,200	\$4.54	8%	\$54,500	\$21,680	\$488,100	\$11.72
17	44.719	46,897	0%	\$28,200	\$2,950	\$87,200	\$38.25	2%	\$28,200	\$3,650	\$101,200	\$6.67	4%	\$28,200	\$6,410	\$156,400	\$4.10	5%	\$28,200	\$10,010	\$228,400	\$4.52	7%	\$84,500	\$33,620	\$756,900	\$11.67
18	63.642	66,000	0%	\$47,900	\$5,030	\$148,500	\$39.71	2%	\$47,900	\$6,210	\$172,100	\$6.90	5%	\$47,900	\$10,920	\$266,300	\$4.25	6%	\$47,900	\$17,040	\$388,700	\$4.69	8%	\$143,800	\$57,240	\$1,288,600	\$12.09
	472.85	511,208		\$364,000	\$38,170	\$1,127,400			\$364,000	\$47,130	\$1,306,600			\$364,000	\$82,880	\$82,880 \$2,021,600			\$364,000	\$129,340 \$2,950,800				\$1,091,800	\$434,530	\$9,782,400	
	# Sweepers Required: 1						# Swe	# Sweepers Required: 1				# Sweepers Required: 1					# Swe	epers Required:	1			# Sweepers Required: 3					
	Average Utilization Rate:			1% (r	not incl normal de	own time)	Average	Average Utilization Rate:		(not incl normal do	wn time)	Average	Utilization Rate:	38%	not incl normal de	own time)	Average	Utilization Rate:	76% (n	ot incl normal de	own time)	Average Utilization Rate: 89% (not inclusional do			wn time)		

TSS Removed

(\$/Ka)

\$3.61

\$3.72

\$5.38

\$3.66

\$7.16

\$3.05

\$2.19

\$6.75

\$3.90

\$8.08

\$7.89

\$1.90

\$9.67

\$5.30

\$3.82

\$7.95

\$1.30

\$1.07

\$892,500

\$1,504,100

\$1,940,700

\$3,506,500

\$1,099,300

\$34,770 \$1,274,900

\$882,860 \$32,371,900